On Degree of Approximation of Conjugate Series of Fourier Series by Product Means \((E, q)A\)

1B.P.Padhy, 2Banitamani Mallik, 3U.K.Misra and 4Mahendra Misra

1Department of Mathematics
Roland Institute of Technology Berhampur, Odisha
Email: iraady@gmail.com
2Department of Mathematics ,JITM, Paralakhemundi, Gajapati, Odisha
Email: banitamaliik@gmail.com
3P.G.Department of Mathematics, Berhampur University, Odisha
Email: umakanta_misra@yahoo.com
4Principal, N.C.College(Autonomous), Jajpur, Odisha
Email: Mahendramisra@gmail.com

ABSTRACT
In this paper a theorem on degree of Approximation of a function \(f \in Lip \alpha\) by product summability \((E, q)A\) of conjugate series of Fourier series associated with \(f\).

KEYWORDS: Degree of Approximation, \(Lip \alpha\) class of function, \((E, q)\)-mean, \(A\)-mean, \((E, q)A\)-product mean, conjugate Fourier series, Lebesgue integral.

2010-MATHEMATICS SUBJECT CLASSIFICATION: 42B05, 42B08.

INTRODUCTION
Let \(\sum a_n\) be a given infinite series with the sequence of partial sums \(\{s_n\}\). Let \(A = (a_{mn})_{m,n}\) be a matrix. Then the sequence \(-to-sequence transformation

\[t_n = \sum_{l=0}^{m} a_{ml} s_l, \quad n = 1, 2, \cdots \]

defines the sequence \(\{t_n\}\) of the \(A\)-mean of the sequence \(\{s_n\}\). If

\[t_n \to s \quad \text{as} \quad n \to \infty, \]

then the series \(\sum a_n\) is said to be \(A\) summable to \(s\).

The conditions for regularity of \(A\)-summability are easily seen to be

(i) \(\sup_{m} \sum_{n=0}^{\infty} |a_{mn}| < H\) where \(H\) is an absolute constant.

(ii) \(\lim_{m \to \infty} a_{mn} = 0\)

(iii) \(\lim_{m \to \infty} \sum_{n=0}^{\infty} a_{mn} = 1\)

The sequence \(-to-sequence transformation, [1]

\[T_n = \frac{1}{(1 + q)^n} \sum_{l=0}^{n} \binom{n}{l} q^{n-l} s_l \]

defines the sequence \(\{T_n\}\) of the \(A\) mean of the sequence \(\{s_n\}\). If
clearly \((E,q)\) method is regular [1]. Further, the \((E,q)\) transform of the \(A\) transform of \(\{s_n\}\) is defined by

\[
\tau_n = \frac{1}{(1+q)^n} \left[\sum_{k=0}^{n} \binom{n}{k} q^{-k} t_k \right]
\]

If \(\sum a_n\) is said to be \((E,q)\)-summable to \(s\), then the series \(\sum a_n\) is said to be \((E,q)\)-summable to \(s\).

Let \(f(t)\) be a periodic function with period \(2\pi\), \(L\)-integrable over \((-\pi,\pi)\). The Fourier series associated with \(f\) at any point \(x\) is defined by

\[
f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right] \equiv \sum_{n=0}^{\infty} A_n(x)
\]

and the conjugate series of the Fourier series (1.8) is

\[
\sum_{n=1}^{\infty} \left[a_n \cos nx - b_n \sin nx \right] \equiv \sum_{n=1}^{\infty} B_n(x)
\]

Let \(S_n(f; x)\) be the \(n\)-th partial sum of (1.9).

The \(L_\infty\)-norm of a function \(f : \mathbb{R} \rightarrow \mathbb{R}\) is defined by

\[
\|f\|_\infty = \sup_{x \in \mathbb{R}} |f(x)|
\]

and the \(L_0\)-norm is defined by

\[
\|f\|_0 = \left(\frac{2\pi}{\int_0^1 |f(x)|^\nu dx} \right)^{\frac{1}{\nu}}, \quad \nu \geq 1
\]

The degree of approximation of a function \(f : \mathbb{R} \rightarrow \mathbb{R}\) by a trigonometric polynomial \(P_n(x)\) of degree \(n\) under norm \(\|\cdot\|_\infty\) is defined by [3].

\[
\|P_n - f\|_\infty = \sup_{x \in \mathbb{R}} |P_n(x) - f(x)|
\]

and the degree of approximation \(E_n(f)\) of a function \(f \in L_0\) is given by

\[
E_n(f) = \min_{P_n} \|P_n - f\|_0
\]

This method of approximation is called trigonometric Fourier approximation.

A function \(f \in Lip \alpha\) if

\[
|f(x+t) - f(x)| = O\left(|t|^\alpha\right), 0 < \alpha \leq 1
\]

We use the following notation throughout this paper:

\[
\psi(t) = \frac{1}{2} \left\{ f(x+t) - f(x-t) \right\},
\]

and
Further, the method \((E,q)A\) is assumed to be regular and this case is supposed throughout the paper.

KNOWN THEOREM

Dealing with the degree of approximation by the product \((E,q)\) \((C,1)\)-mean of Fourier series, Nigam [2] proved the following theorem.

Theorem- 2.1:

If a function \(f\) ,\(2\pi\)-periodic, belonging to class \(Lip\alpha\), then its degree of approximation by \((E,q)\) \((C,1)\) summability mean on its Fourier series \(\sum_{n=0}^{\infty} A_n(t)\) is given by

\[
\|E_n^\alpha C_n^1 - f\|_{\infty} = O\left(\frac{1}{(n+1)^\alpha}\right), \quad 0 < \alpha < 1, \quad \text{where } E_n^\alpha C_n^1 \text{ represents the } (E,q) \text{ transform of } (C,1) \text{ transform of } s_n(f; x).
\]

MAIN THEOREM

In this paper, we have proved a theorem on degree of approximation by the product mean \((E,q)A\) of conjugate series of Fourier series of (1.8), we prove:

Theorem - 3.1:

If \(f\) is a \(2\pi\)-Periodic function of class \(Lip\alpha\), then degree of approximation by the product \((E,q)A\) summability means on its conjugate series of Fourier series (1.8) is given by

\[
\|\tau_n - f\|_{\infty} = O\left(\frac{1}{(n+1)^\alpha}\right), \quad 0 < \alpha < 1, \quad \text{where } \tau_n \text{ as defined in (1.5)}.
\]

LEMNAS

We require the following Lemmas to prove the theorem-3.1.

Lemma - 4.1:

\[
\left| K_n(t) \right| = O(n), \quad 0 \leq t \leq \frac{1}{n+1}, \quad \text{where } K_n(t) \text{ is as defined in (1.15)}
\]

Proof of Lemma- 4.1:

For \(0 \leq t \leq \frac{1}{n+1}\), we have \(\sin nt \leq nsint\), then

\[
\left| K_n(t) \right| = \frac{1}{\pi(1+q)^n} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left| \sum_{u=0}^{k} a_{ku} \cos\left(\frac{t}{2}\cos\left(\frac{u+1}{2}\right)t\right) \sin\left(\frac{t}{2}\right) \right|
\]
\[
\left| \frac{1}{\pi (1 + q)^n} \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} \sum_{\nu=0}^{k} a_{k\nu} \left[\cos \frac{t}{2} - \cos \nu t \cos \frac{t}{2} + \sin \nu t \sin \frac{t}{2} \right] \right| \\
\leq \frac{1}{\pi (1 + q)^n} \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} \sum_{\nu=0}^{k} a_{k\nu} \left[\cos \frac{t}{2} \left(2 \sin^2 \frac{\nu t}{2} \right) + \sin \nu t \right] \\
\leq \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} \sum_{\nu=0}^{k} a_{k\nu} \left(O(\nu) + O(\nu) \right) \right| \\
\leq \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} \sum_{\nu=0}^{k} a_{k\nu} \right| \\
= \frac{H}{\pi (1 + q)^n} \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} O(k) \sum_{\nu=0}^{k} a_{k\nu}, \text{ by regularity condition} \\
= O(n).
\]

This proves the lemma.

Lemma- 4.2:

\[
\left| \overline{K}_n(t) \right| = O\left(\frac{1}{t} \right), \text{ for } \frac{1}{n+1} \leq t \leq \pi, \text{ where } \overline{K}_n(t) \text{ is as defined in (1.15)}
\]

Proof of Lemma- 4.2:

For \(\frac{1}{n+1} \leq t \leq \pi \), we have by Jordan’s lemma, \(\sin \left(\frac{t}{2} \right) \geq \frac{t}{\pi} \).

Then

\[
\left| \overline{K}_n(t) \right| = \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} \sum_{\nu=0}^{k} a_{k\nu} \left[\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2} \right) \right] \right| \\
= \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} \sum_{\nu=0}^{k} a_{k\nu} \frac{1}{P_k} \sum_{\nu' \leq \nu} p_{k-\nu} \cos \frac{t}{2} - \cos \frac{\nu t}{2} \cos \frac{t}{2} + \sin \frac{\nu t}{2} \sin \frac{t}{2} \right| \\
\leq \frac{1}{\pi (1 + q)^n} \left| \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{-k} \sum_{\nu=0}^{k} a_{k\nu} \frac{1}{P_k} \sum_{\nu' \leq \nu} p_{k-\nu} \cos \frac{t}{2} - \cos \frac{\nu t}{2} \cos \frac{t}{2} + \sin \frac{\nu t}{2} \sin \frac{t}{2} \right|.
\]
\[
\leq \frac{1}{\pi (1+q)^n} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} \frac{\pi}{2\nu} a_{k\nu} \cos \frac{t}{2} \left(2\sin^2 \frac{\nu t}{2} + \sin \frac{\nu t}{2} \sin \frac{t}{2} \right) \right\}
\]
\[
\leq \frac{\pi}{2\pi (1+q)^n t} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \right\}
\]
\[
= \frac{1}{2(1+q)^n t} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \right\}.
\]
\[
\leq \frac{H}{2(1+q)^n t} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \text{ by regularity condition}
\]
\[
= O\left(\frac{1}{t} \right). \tag{5.1}
\]

This proves the lemma.

PROOF OF THEOREM - 3.1

Using Riemann –Lebesgue theorem, we have for the n-th partial sum \(s_n(f; x) \) of the conjugate Fourier series (1.8) of,

\[
\overline{s}_n(f; x) - f(x) = \frac{2}{\pi} \int_0^\pi \psi(t) K_n(t) \ dt,
\]

following Titechmarch [3]the \(A \) – transform of \(s_n(f; x) \) using (1.1) is given by

\[
t_n - f(x) = \frac{2}{\pi} \int_0^\pi \psi(t) \sum_{k=0}^{n} a_{nk} \frac{\cos \frac{1}{2} \left(n + \frac{1}{2} \right) t}{2\sin \left(\frac{t}{2} \right)} dt,
\]

denoting the \((E, q)A \) transform of \(s_n(f; x) \) by \(\tau_n \), we have

\[
\| F_n - f \| = \frac{2}{\pi (1+q)^n} \int_0^\pi \psi(t) \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} \frac{\cos \frac{1}{2} \left(\nu + \frac{1}{2} \right) t}{2\sin \left(\frac{t}{2} \right)} \right\} dt
\]
\[
= \int_0^\pi \psi(t) K_n(t) dt
\]
\[
= \left\{ \int_0^{\frac{1}{n+1}} + \int_0^{\frac{\pi}{n+1}} \right\} \psi(t) K_n(t) \ dt
\]

\[
(5.1) \quad = I_1 + I_2, \text{ say}
\]

Now
\[|I_1| = \frac{2}{\pi (1+q)^n} \left| \int_0^{\frac{1}{n+1}} \psi(t) \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{\nu} \frac{\cos \frac{\nu}{2} - \cos \left(\frac{\nu + 1}{2} \right)}{2 \sin \frac{\nu}{2}} \right\} dt \right| \]

\[\leq O(n) \int_0^{\frac{1}{n+1}} |\psi(t)| dt , \text{ using Lemma 4.1} \]

\[= O(n) \int_0^{\frac{1}{n+1}} |t^\alpha| dt \]

\[= O(n) \left[t^{\alpha+1} \right]_0^{\frac{1}{n+1}} \]

\[= O(n) \left[\frac{1}{(\alpha+1)(n+1)^{\alpha+1}} \right] . \]

\[= O \left[\frac{1}{(n+1)^\alpha} \right] \]

Next

\[|I_2| \leq \int_{\frac{1}{n+1}}^{\pi} |\psi(t)| \left| \overline{K_n}(t) \right| dt \]

\[= \int_{\frac{1}{n+1}}^{\pi} |\psi(t)| O \left(\frac{1}{t} \right) dt , \text{ using Lemma 4.2} \]

\[= \int_{\frac{1}{n+1}}^{\pi} |t^\alpha| O \left(\frac{1}{t} \right) dt \]

\[= \int_{\frac{1}{n+1}}^{\pi} t^{\alpha-1} dt \]

\[= O \left(\frac{1}{(n+1)^\alpha} \right) \]

Then from (5.2) and (5.3), we have

\[|\tau_n - f(x)| = O \left(\frac{1}{(n+1)^\alpha} \right) , \text{ for } 0 < \alpha < 1. \]
Hence, $\|r_n - f(x)\|_{\infty} = \sup_{-\pi < x < \pi} |r_n - f(x)| = O\left(\frac{1}{(n+1)^\alpha}\right), 0 < \alpha < 1$.

This completes the proof of the theorem 3.1.

REFERENCES