International Archive of Applied Sciences and Technology

Int. Arch. App. Sci. Technol; Vol 11 [3] September 2020 : 182-185 © 2020 Society of Education, India [ISO9001: 2008 Certified Organization] www.soeagra.com/iaast.html

CODEN: IAASCA

DOI: .10.15515/iaast.0976-4828.11.3.182185

Effect of Organic and Inorganic Fertilizers Combinations on Plant Growth, Fruit Yield and Yield Parameters in Chilli (Capsicum annuum L.)

Vikash Kumar¹, Saurabh Tomar^{2*} and C. P. Sachan³

¹⁻³Department of Seed Science and Technology,²Department of Horticulture Chandra Shekhar Azad University of Agriculture & Technology Kanpur 208002 (U.P.) India
*Corresponding authorica a mail abudhary and gamail and

*Corresponding author's e-mail: chaudhary.csa@gmail.com

ABSTRACT

The current study "Effect of organic and inorganic fertilizers combinations on plant growth, fruit yield and yield parameters in chilli" was conducted during Kharif 2010-11seasons at student farm department of vegetable science, college of agriculture, Chandra Shekhar Azad University of agriculture and technology Kanpur.Application of organic matter @ 25t FYM/ha along with RDF (100:50:50kg NPK/ha) recorded higher plant height (70.6, 86.6, 99.0, 99.7cm. in Azad mirch-1 and 66.8, 72.8, 85.0, 85.9 cm in Chanchal variety) at 60, 90, 120 Days and at harvesting. Similar trend was also noticed in days to 50% Flowering with the application of FYM @ 25t/ha and RDF. The application of FYM @ 25t/ha along with RDF recorded higher no. of fruit (97 and 53/plant) fruit length (7.20 and 3.22cm.), Fruit diameter (2.70 and 2.99), seed weight (0.376 and 0.153g/fruit), pericarp weight (0.270 and 0.222g/Fruit) over control. The fruit yield were also recorded significantly higher (201.99 and 145.32) g/plant in Azad mirch-1 and Chanchal respectively overcontrol.

Key words: Organic and Inorganic Fertilizers Chilli, Bio-fertilizers.

Received 01.07.2019

Revised 26.07.2019

Accepted 14.08.2019

CITATION OF THIS ARTICLE

V Kumar, S Tomar and C. P. Sachan Effect of Organic and Inorganic Fertilizers Combinations on Plant Growth, Fruit Yield and Yield Parametrs in Chilli (*Capsicum annuum L.*). Int. Arch. App. Sci. Technol; Vol 11 [3] September 2020: 182-185

INTRODUCTION

Chilli is an important crop used as both green vegetable and spices. It's rich source of Vitamin A, C and E. The pungency in chilli is due to an alkaloid capsaicin. This has high medicinal value specially anti-cancerous and instant pain relief. The world area and production of chilli is around 15 lakh/ha. And 70 lack ton respectively. Major chilli growing countries with their export share are India 25%, China 24%, Spain 17%, Mexico 8%, Pakistan 7.2%, Morocco 7% and Turkey 5%. India, China and Pakistan are major Exporter and consumer of chilli. In India chilli is grown on an area of 7.29 lakh/ha with annual production of 12.69 lakh ton. and productivity of 1530kg/ha. In India major chilli growing states are Andhra Pradesh, Karnataka, UP, Rajasthan, etc. With the indiscriminate use of fertilizers and chemicals there is increased risk of health hazards. Since vegetables are mostly consumed fresh or partially cooked they should be devoid of residues of chemical fertilizers. Besides, continuous use of chemical fertilizers has resulted in the depletion of soil health. For all these reasons, now much importance is being given to Integrated Nutrient Management (INM). Chilli crop respond well to the application of both organic manures and inorganic fertilizers. Organic manures supply the major nutrients minerals and improve many soil properties and soil health that maintain crop productivity. Hence

ORIGINAL ARTICLE

Kumar et al

there is an urgent need of use different combination of organics with inorganic along with bio fertilizers.

MATERIAL AND METHODS

A field experiment was conducted at the student farm department of vegetable science college of agriculture CSAUA and T Kanpur. The field experiment composed of 14 treatment combination involving two chilli varieties and seven treatments. The design followed was RBD with factorial concept having three replications. The main field is plough and harrowed till fine tilth. The full dose of FYM, Vermicompost and biofertilizers were incorporated in soil as per the treatment one month before sowing. The entire dose of P₂O₅, K₂O and half dose of N₂ was applied 30 days before transplanting of seed lings in the field. The seedlings were prepared in nursery and transplanted in main field at 75×45 cm.

Five plants were selected randomly and tagged in each plot and observations are taken at 60, 90 and 120 DAS an at the time of harvesting. The plant height was measured from the base of the plant to the tip of fully opened leaf

on the main shoot and the main plant height measured in cm. For the days to 50% flowering daily observation were made on five randomly selected plants. The days on which 50% of plant showed flowering initiation was carried as 50% flowering and recorded. The yield components were taken as the no. of red fruit harvested from five plants are counted fruit length and diameter of five selected plants was measured from the base of pedicle to the tip of the fruit and average was worked out and expressed in cm.

Pericarp weight of fruit was collected weight and resulted in gram. Fruit yield of five randomly selected plants is taken by picking and drying the harvested fruits and weight as gram/ plant also the fruit yield of whole plant is taken in same way.

RESULTS AND DISCUSSION

The growths parameters (Table 1 and Table 2) differ significantly due to treatment higher plant height (70.6, 86.6, 99.0, 99.7 and 66.8, 72.8, 85.0, 85.9 cm respectively) were noticed with FYM 25 t/ha. Along with RDF in Azad Mirch-1 and Chanchal at 60, 90,120 days and harvesting respectively which is followed by treatment T3,T4,T5,T6,T7andT1 Respectively.

Ð	Plant Height (cm)											
rea	60 DAT		90 DAT			120 DAT			At Harvest			
tments	V1	V2	MEAN	V1	V2	MEAN	V1	V2	MEAN	V1	V2	MEAN
T1	56.3	53.0	54.6	72.4	59.1	65.8	77.1	71.0	74.0	78.6	71.7	75.1
T2	70.6	66.8	68.7	86.6	72.8	79.7	99.0	85.0	92.0	99.7	85.9	92.8
Т3	66.0	63.1	64.6	81.2	68.1	74.6	90.4	80.5	85.4	91.0	79.7	85.3
T4	65.6	59.6	62.6	76.7	64.9	70.8	87.7	76.3	82.0	88.9	76.4	82.7
T5	63.4	56.0	59.7	76.3	62.3	69.3	86.3	74.6	80.4	86.1	74.7	80.4
T6	60.9	54.3	57.6	74.4	61.1	67.7	81.3	73.8	77.6	81.9	73.9	77.9
T7	59.6	54.0	56.8	73.3	59.3	66.3	79.3	73.3	76.3	80.0	73.4	76.7
MEAN	63.2	58.1	60.6	77.3	63.9	70.6	85.8	76.3	81.1	86.6	76.5	81.5
For Comparing the Mean of	S.Em+CD at 5%		S.Em+CD at 5%		at 5%	S.Em+CD at 5%		S.Em+CD a		t 5%.		
Variety (V)	0.73	3	2.14	0.92	2	2.67	1.18		3.43 1.08		3	3.15
Treatment(T)	1.38 4.01		1.72 5.0		5.00	2.21	L	6.42	2.03	3	5.90	
VxT	1.95	5	NS	2.44	ł	NS	3.12	2	NS	2.87	7	NS

at different growth stages in chilli.	Table 1: Effe	ct of Organics biofer	rtilizers and plant	growth	regulators	on plant h	ıeight

NS - Non significantDAT - Days after Transplanting

V1 – Azadmirch-1V2 – Chanchal

T1 - Control (RDF 100:50:50 kg NPK/ha)T5 - RDF + Azospirillum (500 g/ha)

T2 - RDF + Farm yard manure(25 t/ha)T6 - RDF + NAA (40 ppm)

T3 - RDF + Vermicompost (5 t/ha)T7 - RDF + Ethrel (250 ppm)

T4 - RDF + Vesicular arbuscularmycorrhiza (2 kg /ha)

Kumar et al

These results indicate that the importance of adding organic manures to soil in combination with inorganic fertilizers which increases the availability of nutrients considerably result in positive effect on growth parameters. Similar findings was also noticed by Damke et al. [1] who reported increased plant height /plant in chilli due to compound application of organic, inorganic fertilizers also improves in soil properties. The similar result was also reported by Natrajan [2] and Satagundi [3] in chilli and Rekha and Gopal Krishna [4] in bitter gourd. Due to treatment there is significant difference in days to 50% flowering. The less no of days to flowering (35.33 and 29.33 day respectively) is noticed in Azad mirch-1 and Chanhal in T2 (RDF+25 t/ha. FYM) which is followedbyT3, T4, T5, T6, T7 and T1 in both the cultivars. Indication of early flowering due to the application of FYM was mainly ascribed to the process of bio regulators which have an influence on early flowering initiation. These results are in line with the finding of Nirmala and Vedival in Bitter gourd. Another probable reason may be due to better nutritional status of the plant which was favoured by treatments. Increased production of leaves might help to elaborate more photosynthesis and induce flowering stimulates thus effecting early initiation of flower bud. Due to treatment significant difference in no of fruit /plant was noticed due to treatment and varieties among genotypes. Azad Mirch -1 recorded significantly higher no. of fruit/plant (86.66) over Chanchal (41.23) among treatments.T2 (RDF+25 t/ha. FYM) recorded significantly higher no of fruit /plant (75.50) followed by T3 (69.16) and was on par with T4 while significantly low no. of fruit/plant were recorded in control (54.16). As present study shows increase in no of fruits /plant is due to production of more no. of flowers, higher % of fruit set and reduced shedding of flowers and fruits resulted in increased production. The result of present investigation has conformity with the finding of Maurya and Lal [5] and Balraj [6] in chilli and Goundappalvar [7] in tomato. Due to introduction of treatments and varieties fruit length significantly differ among genotypes Azad Mirch-1 recorded higher fruit length (6.24cm) over chanchal (2.76 cm).

Table 2: Effect of Organics	biofertilizers and	plant growth	regulators on	different
	parameters in	chilli.		

Treatments	Days to50% Flowering		No. Fruit/ Plant Days to50%		Fruit length(cm)		Fruit Diameter (cm)		Pericarp Weight (g/fruit)		Fruit yield (g/plant)	
	V1	V2	V1	V2	V1	V2	V1	V2	V1	V2	V1	V2
T1	38.66	32.66	72.00	36.33	5.48	2.52	2.20	2.31	0.222	0.191	163.24	122.63
T2	35.33	29.33	97.33	53.66	7.20	3.22	2.70	2.99	0.270	0.222	201.99	145.32
тз	35.66	30.00	93.33	45.00	6.62	2.85	2.56	2.76	0.224	0.214	194.15	139.17
T4	36.66	30.66	89.00	39.66	6.32	2.80	2.43	2.72	0.242	0.220	190.81	132.23
Т5	37.33	30.66	86.00	40.00	6.19	2.72	2.34	2.69	0.239	0.210	182.12	130.12
Т6	38.00	32.00	84.00	38.00	5.99	2.66	2.31	2.66	0.236	0.209	179.15	123.10
Т7	38.33	31.66	85.00	36.00	5.89	2.52	2.25	2.62	0.236	0.208	169.21	127.57
MEAN	37.14	31.00	86.66	41.23	6.24	2.74	1.64	2.67	0.24	0.21	183.00	131.45
For Comparing the Mean of	S.Em+CD at 5%		S.Em+CD at 5%		S.Em+CD at 5%		S.Em+CD at 5%		S.Em+CD at 5%		S.Em+CD at 5%	
Variety (V)	0.30	0.62	1.14	2.36	0.05	0.16	0.03	0.07	0.002	0.042	2.79	5.75
Treatment(T)	0.16	0.33	2.14	4.41	0.10	0.30	0.06	0.13	0.003	0.007	5.23	10.75
VxT	0.42 NS	0.88	3.03 NS	6.24	0.14 NS	0.42	0.093 NS	0.19	0.005 NS	0.11	7.36 NS	15.20

NS - Non significantDAT - Days after Transplanting

V1 - Azadmirch-1V2 - Chanchal

T1 - Control (RDF 100:50:50 kg NPK/ha)T5 - RDF + Azospirillum (500 g/ha)

T2 - RDF + Farm yard manure (25 t/ha) T6 - RDF + NAA (40 ppm)

T3 - RDF + Vermicompost (5 t/ha) T7 - RDF + Ethrel (250 ppm)

T4 - RDF + Vesicular arbuscularmycorrhiza (2 kg /ha)

Kumar et al

Among treatments T2 (5.21) followed by T3 (4.74) and was on par with T4 (4.56) and T5 (4.45) while T1 (4.00) recorded minimum fruit length. But in case of fruit diameter results differ significantly among cultivars Chanchal recorded higher fruit diameter (2.67) ove AzadMirch-1 (2.40). While on treatments T2 (2.84) recorded highest which is followed by T3 (2.66) and was on par with T4 (2.07) and T5 (2.51) while control (T1) recorded lowest (2.26) increase in fruit length and diameter is attached to increase in the availability of nutrients to the plants with application of the organic manure which in turn enhance the efficiency of N and P. Similar results were reported by Chavan*et al.* [8] and Sutagundi [3] in chilli.

Significant difference in pericarp weight/fruit is noticed due to treatments and varieties. Among the genotypes Azad mirch-1 recorded significantly higher pericarp weight/fruit (0.241g) over Chanchal (0.210g). Among treatments, T2 (0.245g) recorded significantly higher pericarp weight/fruit followed by T3 (0.231g) while lower weight of pericarp is found in control (0.207g). Fruit yield g/plant varies significantly due to interaction of genotypes and treatments. Among genotypes AzadMirch-1 recorded higher (183.00 g/plant) over Chanchal (131.45g/plant). Among treatments T2 recorded higher (173.65g/plant) followed by T3 (166.66 g/plant) and T4 (166.66g/plant) while control recorded lowest

(142.33g/plant) yield. Similarly fruit yield/ha./varieties significantly differ due to treatment and varieties. Among varieties Azad Mirch-1 recorded significantly higher fresh fruit yield (9050 kg/ha) over Chanchal (6612 kg/ha). Among treatments T2 recorded highest fresh fruit yield (8555kg/ha) followed by T3 (8238kg/ha) and T4 (8038kg/ha.) whereas control recorded lowest (7145kg/hac). This may be due to the better stem girth would havehelped the translocation ofsynthesized cytokines as well as more quantity of available phosphorus through xylem vessels. The accumulation of cytokinens and phosphorus in these auxiliary buds would have favored the plants to enter in to reproductive phase early.

REFERENCES

- 1. Damke, M.M., Kawarkhe, V. J. and patil, C.O., (1988), Effect of phosphorus and potassium on growth and yield Of chilli. Punjabrao Krishi Vidyapeeth Research Journal, 12: 110-114.
- 2. Natarajan, S., 1990, Standardisation of nitrogen application for chilli (Capsicum annuum L.) growth under semi-dry condition. South Indian Horticulture, 47(1-6): 252-254.
- 3. Sutagundi, R. B., (2000), Effect of mulches and nutrient management on growth and yield of chilli *Capsicum annuum* L.).M.Sc. (Agri.) Thesis, University of Agricultural Sciences, Dharwad.
- 4. Rekha, C. R. and Gopalakrishnan, J. R., (2001), Effect of levels and frequencies of organic manures and inorganic fertilizers on growth and productivity of bitter gourd (*Mamordica charantia* L.). South Indian Horticulture, 49: 137-139.
- 5. Maurya, C. P. and Lal, H., (1987), Effect of IAA, NAA and GA on growth and yield of onion (Allium cepa L.) and vegetable chilli (*Capsicum annuum* L.).Progressive Horticulture, 19: 203-206.
- 6. Balaraja. R., 2008, Investigations of seed technological aspects in chilli (Capsicum annuum L) Ph.D. Thesis, University of Agricultural Sciences, Dharwad
- 7. Goudappalavar, H. B., (2006), Effect of mother plant nutrition and chemical spray on seed yield and quality in tomato (*Lycopersicon esculentum* Mill.). M.Sc. (Agri) Thesis, University of Agricultural Sciences, Dharwad.
- 8. Chavan, P. J., Syed Ismail, Rudraksha, G. B., Malewar, G. V. and baig, M. I., (1997), Effect of various nitrogen levels through FYM and urea on yield, uptake of nutrients and ascorbic acid content in chilli (*Capsicum annuum* L.). Journal of the Indian Society of Soil Science, 45(4):