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ABSTRACT 
The paper stems from an attempt to investigate a somewhat incomprehensible pattern(i.e. fractal look-
like) which suffice for the existence of Sierpinski graph. Graphs of “Sierpinski” type appear naturally in 
many different areas of mathematics as well as in several other fields. There are a wide variety of graph 
matrix representations. Among these are the adjacency matrix, incidence matrix, circuit matrix, 
Laplacian matrix and Signless Laplacian matrix. Here we introduces new type of Sierpinski graph, said 
Sierpinski Eulerian graph. Spectra of Sierpinski graph can also be derived by studying eigenvalues. The 
choice of matrix representation clearly has a large effect on the suitability of spectrum in a number of 
pattern recognition tasks. The objectives of this research are to find compare spectra of graph matrix 
representation. 
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INTRODUCTION 
This is not a sudden discovery but a gradual realisation as recently as few years earlier we 
do not have certain data that made interpretation of the self similar structures that now we 
calling a Fractal. [1]Graph theory is a branch of mathematics started by Euler as early as 
1736. It took a hundred years before the second important contribution of Kirchhoff had 
been made for the analysis of electrical networks. [1]There are many physical applications 
whose performance depends not only on the characteristics of their components but also on 
their relative location. On the other hand, if the location of a member is changed, the 
properties of the structure will again be different. Therefore, the connectivity (topology) of 
the structure influences the performance of the entire structure. Hence, it is important to 
represent a system so that its topology can clearly be understood. [3,8,16,20] Some of the 
uses of the theory of graphs in the context of civil engineering are as follows. A graph can be 
a model of a structure, a hydraulic network, a traffic network, a transportation system, a 
construction system or a resource allocation system. These are only some of such models, 
and the applications of graph theory are much extensive.  
[12,13,15] Sierpinski’s Triangle is one of the most famous examples of a fractal although we 
should note that Benoit Mandelbrot first used the term fractal in 1975, almost sixty years 
after Sierpinski created his famous triangle.  . 
The generalised Sierpinski graph, as per the above definition of the Sierpinski graphs 
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Trail that visits every edge of the graph once and only once is called Eulerian trail. 
Starting and ending vertices are different from the one on which it began. A graph of this 
kind is said to be traversable. An Eulerian circuit is an Eulerian trail that is a circuit i.e., it 
begins and ends on the same vertex.  A graph is called Eulerian when it contains an 
Eulerian circuit. A digraph in which the in-degree equals the out-degree at each vertex. 
Theorem: An undirected graph has at least one Euler path if and only if it is connected and 
has two or zero vertices of odd degree. 
Theorem: An undirected graph has an Euler circuit if and only if it is connected and has 
zero vertices of odd degree. 
Proposition:  Sierpinski’s Gasket has an Euler circuit if and only if it is has two or  zero 
vertices of odd degree. 
Proposition: Sierpinski’s Gasket is Eulerian if and only if its vertices are all of even degree. 
Proof:  
Case 1(Eulerian): Suppose G be a Sierpinski Graph is Eulerian, then G has an Eulerian 
trail which begins and ends at “a”. If traverse along the trail then each and every time 
traverse a vertex having two edges. It is necessary condition that starting and ending nodes 
are same and each and every vertices must contain even degree (deg(v)) of vertices.   
Case 2( not Eulerian): Suppose G be a Sierpinski Graph is not Eulerian, then G has not 
Eulerian trail which begins at “a1” but does not ends at “a1”. If traverse along the trail then 
each and every time traverse a vertex having two odd vertices or even vertices but above 
figure does not satisfy the Eulerian condition. Since each vertex in the middle of the trail is 
associated with three edges (G can not have just one odd vertex). 
Eigenvalues of a graph 
Let A be the adjacency matrix of the graph Γ of order N. Let I be the identity matrix of order 
N, and let λ be a scalar. Then the determinant |A−λI| which is an ordinary polynomial in λ 
of N-th degree with scalar coefficients, is called the characteristic polynomial of Γ. The roots 
of the equation |A−λI| = 0 are called the eigenvalues of the graph Γ (also of the matrix A). 
The set of eigenvalues is called the spectrum of the graph Γ. The multiplicity of an 
eigenvalue λ is called the algebraic multiplicity of λ. The equation Au = λu is called an 
eigenvalue equation. A nonzero solution u of the equation is called an eigenvector or 
eigenfunction for the eigenvalue λ. The vector space constructed from the set of eigenvectors 
corresponding to a particular eigenvalue λ is called the eigenspace of λ. The dimension of 
the eigenspace of an eigenvalue λ is the geometric multiplicity of λ. For a symmetric matrix, 
the geometric and algebraic multiplicities of an eigenvalue are equal. 
Laplacian Matrix:- 
We consider graphs which has no loops or parallel edges, unless stated otherwise. The 

adjacency matrix )(GA  of G  is an nn matrix with its rows and columns indexed by )(GV

and with the ),( ji entry equal to 1 if vertices ji, are adjacent (i.e., joined by an edge) 

0(zero) otherwise. Thus )(GA is a symmetric matrix with its thi  row (or column) sum 

equal to ),(Gdi  which by definition is the degree of the vertex i , .,.....,2,1 ni   Let )(GD

denote the nn diagonal matrix, thi diagonal entry is .,.....,2,1),( niGdi   

 The Laplacian matrix of ,G  denoted by ),(GL is simply the matrix ).()( GAGD   

Signless Laplacian Matrix:- 

The Signless Laplacian matrix of ,G  denoted by ),(GL is simply the matrix ).()( GAGD   

Theorem: Let G be a graph on n vertices with vertex degrees nddd ,.....,, 21 and largest Q-

eigenvalue .1q  Then .max2min2 1 ii dqd   For a connected graph G, equality holds in 

either of these in equalities if and only if G is regular. 
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Theorem: Let G be a graph on n vertices with vertex degrees nddd ,.....,, 21 and largest Q-

eigenvalue .1q Then ),max()min( 1 jiji ddqdd  where (i,j) runs over all pairs of 

adjacent vertices of G. For a connected graph G, equality holds in either of these 
inequalities if and only if G is regular or semi-regular bipartite. 

Proof: The line graph L(G) of G has largest eigenvalue .21 q Consider an edge u of G which 

joins vertices i and j. The vertex u of L(G) has degree .2 ji dd Hence, 

),2max(2)2min( 1  jiji ddqdd which proves the theorem. 

Lemma: Let )(xp be a given polynomial. If λ is an eigenvalue of A , while x is an associated 

eigenvector, then )(p  is an eigenvalue of the matrix )(Ap and x is an eigenvector of )(Ap
associated with p(λ). The characteristic polynomial of A is defined by 

)det()( AtItA   
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Lemma: Let A be a symmetric real matrix. Suppose v and w are eigenvectors of A 
associated with the eigenvalues λ and µ respectively. If λ µ then v ⊥ w, i.e. v and w are 
orthogonal. 
Proposition: The least eigenvalue of the signless Laplacian of a connected graph is equal to 
0 if and only if the graph is bipartite. In this case 0 is a simple eigenvalue.  

Proof: Let ).,......,( 1 n
T xxx  For a non-zero vector x we have Qx=0 if and only if .0xRT  

The later holds if and only if ji xx  for every edge, i.e. if and only if G is bipartite. Since 

the graph is connected, x is determined up to a scalar multiple by the value of its 
coordinate corresponding to any fixed vertex i. 
Theorem: (Spectral Theorem) Let A be a n×n symmetric real matrix. Then there are n 
pairwise orthogonal (real) eigenvectors vi of A associated with real eigenvalues of A. 
Consider λ1(A) ≤ ... ≤ λn(A) are eigenvalues of a symmetric matrix A. Some of these 
eigenvalues can be equal; we say that those eigenvalues have multiplicity greater than 1. 

Thus we denote the spectrum of A also in the form 
][

2

][

1
21 ,.......,
mm  , where i  is an 

eigenvalue with multiplicity mi. 
Lemma[17,21]: Let G be a graph on n vertices.  
i) The maximum eigenvalue of G lies between the average and the maximum degree of G, 
i.e.  

. nd   

ii) The range of all the eigenvalues of a graph is   −∆ ≤ λ1 ≤ λ2 ≤ ... ≤ λn ≤ ∆. 
Definiton: (Laplacian eigenvalues) The eigenvalues of L(G) are called the Laplacian 
eigenvalues. The set of all the Laplacian eigenvalues are called the (Laplacian) spectrum of 
the graph G.  
Lemma[8]: Let G be a graph on n vertices with Laplacian eigenvalues λ1 = 0 ≤ λ2 ≤ ... ≤ λn 
and maximum degree ∆. Then 0 ≤ λi ≤ 2∆ and λn ≥ ∆.  
Proof: All eigenvalues are nonnegative by positive semidefinite matrices. 
Let u be an eigenvector corresponding to the eigenvalue λ, and let uj denote the entry with 
the largest absolute value. We have  

.22
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Thus, we have |λ|≤ 2∆ as required. 
Let j be the vertex with maximal degree, i.e. dj = ∆. We define the characteristic vector x:  
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Now, the desired inequality follows:
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RESULT AND DISCUSSION 

The Laplacian and Signless laplacian eigenvalues of the representation matrices 
of Siepinski graph and Sierpinski Eulerian graph. The eigenvalue spectra become more 

comparable via the proposed notations 

respectively. 

Results for Laplacian matrix of Sierpinski and 
eigenvalues λ1 of Laplacian matrix of  Sierpinski Graph and (e) eigenvalues λ2 of Laplacian 
matrix of Sierpinski Eulerian graph.
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Now, the desired inequality follows: 
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The Laplacian and Signless laplacian eigenvalues of the representation matrices 
of Siepinski graph and Sierpinski Eulerian graph. The eigenvalue spectra become more 

comparable via the proposed notations 2,1   of Sierpinski graph and Sierpinski Eulerian 

for Laplacian matrix of Sierpinski and Sierpinski Eulerian graph dataset. (b) 
eigenvalues λ1 of Laplacian matrix of  Sierpinski Graph and (e) eigenvalues λ2 of Laplacian 
matrix of Sierpinski Eulerian graph. 
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The Laplacian and Signless laplacian eigenvalues of the representation matrices L and L  
of Siepinski graph and Sierpinski Eulerian graph. The eigenvalue spectra become more 

of Sierpinski graph and Sierpinski Eulerian 

 

 
Sierpinski Eulerian graph dataset. (b) 

eigenvalues λ1 of Laplacian matrix of  Sierpinski Graph and (e) eigenvalues λ2 of Laplacian 
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Results for Signless Laplacian matrix of Sierpinski and Sierpinski Eulerian graph da
(c) eigenvalues λ1 of Signless Laplacian matrix of  Sierpinski Graph and (f) eigenvalues λ2 of 
Signless Laplacian matrix of Sierpinski Eulerian graph.
 
Adding connected components. We now turn to a specific manipulation of graphs addition 
of connected components which allows us to order the spectra of the graphs observed in the 
above graphs. As above we see that we can obtain Sierpinski Eulerian graph from 
Sierpinski graph by adding a edges between pair of odd degree vertices and that we can 
obtain Sierpinski Eulerian graph by adding the connected components [14]. In general, we 
can obtain a graph in Cj,k from a graph in C
graph one or more connected components in which all vertices are of degree
equal to j and smaller or equal to k, with at least one vertex attaining degree j.
The above data results that the Signless Laplacian
used to encode graphs and has more representational power. Also, shows that
Laplacian eigenvalues and Laplacian eigenvalues have better use, as they have stronger 
characterization properties.  
Since the Signless Laplacian spectra perform better also in comparison to spectra of other 
commonly used graph matrices (Laplacia
the signless Laplacian seems to be the most convenient for use in studying graph 
properties. 
 
CONCLUSION 
Spectral graph theory provides another approach to the problem of graph similarity [2,3,4]. 
This approach is based on a branch of mathematics that is concerned with characterising 
the structural properties of graphs [6]. There are many results in the mathematical 
literature on spectral characterizations of particular classes of graphs, see [3,8,16,19].
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for Signless Laplacian matrix of Sierpinski and Sierpinski Eulerian graph da
(c) eigenvalues λ1 of Signless Laplacian matrix of  Sierpinski Graph and (f) eigenvalues λ2 of 
Signless Laplacian matrix of Sierpinski Eulerian graph. 

Adding connected components. We now turn to a specific manipulation of graphs addition 
connected components which allows us to order the spectra of the graphs observed in the 

above graphs. As above we see that we can obtain Sierpinski Eulerian graph from 
Sierpinski graph by adding a edges between pair of odd degree vertices and that we can 
btain Sierpinski Eulerian graph by adding the connected components [14]. In general, we 

from a graph in Cj+1,k, for all j ≤ k − 1, k ∈ N, by adding to the 
graph one or more connected components in which all vertices are of degree
equal to j and smaller or equal to k, with at least one vertex attaining degree j.
The above data results that the Signless Laplacian-spectrum and Laplacian
used to encode graphs and has more representational power. Also, shows that
Laplacian eigenvalues and Laplacian eigenvalues have better use, as they have stronger 

 
Since the Signless Laplacian spectra perform better also in comparison to spectra of other 
commonly used graph matrices (Laplacian, the adjacency matrix)as expressed in [7] that, 
the signless Laplacian seems to be the most convenient for use in studying graph 

Spectral graph theory provides another approach to the problem of graph similarity [2,3,4]. 
oach is based on a branch of mathematics that is concerned with characterising 

the structural properties of graphs [6]. There are many results in the mathematical 
literature on spectral characterizations of particular classes of graphs, see [3,8,16,19].
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for Signless Laplacian matrix of Sierpinski and Sierpinski Eulerian graph dataset: 

(c) eigenvalues λ1 of Signless Laplacian matrix of  Sierpinski Graph and (f) eigenvalues λ2 of 

Adding connected components. We now turn to a specific manipulation of graphs addition 
connected components which allows us to order the spectra of the graphs observed in the 

above graphs. As above we see that we can obtain Sierpinski Eulerian graph from 
Sierpinski graph by adding a edges between pair of odd degree vertices and that we can 
btain Sierpinski Eulerian graph by adding the connected components [14]. In general, we 

N, by adding to the 
graph one or more connected components in which all vertices are of degree greater or 
equal to j and smaller or equal to k, with at least one vertex attaining degree j. 

spectrum and Laplacian-spectrum is 
used to encode graphs and has more representational power. Also, shows that signless 
Laplacian eigenvalues and Laplacian eigenvalues have better use, as they have stronger 

Since the Signless Laplacian spectra perform better also in comparison to spectra of other 
n, the adjacency matrix)as expressed in [7] that, 

the signless Laplacian seems to be the most convenient for use in studying graph 

Spectral graph theory provides another approach to the problem of graph similarity [2,3,4]. 
oach is based on a branch of mathematics that is concerned with characterising 

the structural properties of graphs [6]. There are many results in the mathematical 
literature on spectral characterizations of particular classes of graphs, see [3,8,16,19]. 
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Here, we have compared the spectra of the two graph representation matrices the Laplacian 
matrices and the Signless Laplacian matrices and found differences in the spectra 
corresponding to Sierpinski graphs. Signless Laplacian matrices have more representative 
value as compare to Laplacian matrices. As a result of this work, we hope to have increased 
awareness about the importance of the choice of representation of matrix for graph signal 
processing applications and other fields of communications [3]. However, these results 
hardly could be applied to graphs which appear in applications to computer science, 
science, mathematics and other aspects of NP problems. 
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