Application of Scheffe’s Model in Optimization of Compressive Strength of Lateritic Concrete

Elvis M. Mbadike1* and N.N. Osadebe2
1department Of Civil Engineering, Michael Okpara University Of Agriculture, Umudike, Umuahia, Nigeria
2department Of Civil Engineering, University Of Nigeria, Nsukka
*Corresponding E-Mail: Elvis_Mbadike@Yahoo.Co.Uk.

ABSTRACT

In this research work, the use of Scheffe’s simplex theory for the optimization of the compressive strength of lateritic concrete was investigated. The objective of the study is to develop a model that can predict the mix ratio when the desired compressive strength is known or vice-versa. A total of sixty (60) concrete cubes were cast. For each of the twenty mix ratios, three cubes were cast and the average determined. The first thirty cubes were used to determine the coefficients of the model while the other thirty cubes were used to validate the model (control test). The optimum compressive strength of concrete at 28 days curing was found to be 25.04N/mm² and the corresponding mix ratio was 0.6:1:1.75:1.75 (water, cement, laterite, granite). The model was found to be adequate for prescribing concrete mix ratios, when the desired compressive strength is known and vice-versa.

Keywords: Compressive strength, Scheffe’s model, Lateritic concrete, Curing.

INTRODUCTION

Concrete mix design could be carried out using either the empirical or statistical experimental method [1]. For instance, optimization of mix proportions of mineral aggregates for use in polymer concrete was attempted using statistical techniques [2]. There have been some advances in statistical experimental design for performing tests on concrete but these do not explicitly take into consideration the chemistry involved [3]. The supplementary cementitious materials optimization system has been developed [4]. The method is a decision making system that enables the reduction of portland cement in concrete by determining the optimum level of replacement by supplementary cementitious materials. New mix designs for fresh and hardened concrete were developed in order to create constructions materials with high performance [5]. Some of the statistical experimental methods include simplex design [6, 7] and [8], axial design, mixture experiments involving process variables, mixture models with inverse terms [9] and K-model [10]. Empirical methods are prone to trial and error which results in material wastage whenever they are used [11]. Sequel to this, statistical experimental method could be adopted using simplex design. The materials used in such experiments include water, cement, laterite and granite. There is the need to formulate mathematical models that will prescribe concrete mix ratios, when the desired compressive strength is known and vice-versa. Similarly, the need to determine the combination of the materials that would give the highest compressive strength should be met.

In this paper, the Scheffe’s mathematical model was adopted in the optimization of compressive strength of lateritic concrete.

LITERATURE REVIEW

Concrete is a mixture of several component such as cement, fine aggregate, coarse aggregate and water. According to [12], concrete is known to be a composite inert material comprising of binder course (cement) and mineral filler (body) or aggregate and water. Admixture could be added but for given set o of materials the proportion of the components influences the properties of the concrete mixture, hence, the need to optimize concrete properties such as strength. Mathematical modeling is the process of creating a mathematical representation of some phenomenon in order to gain a better understanding of that phenomenon [13]. Lasis, Ogunjimi [14] described a model as an abstract that uses mathematical language to control the behaviour of a giving system According to [15], modeling is mathematical equation of dependent variable (Response) and independent variable (Predictor). Manasce et al [16] from their studies...
Hence, where the pseudo components in a four-component mixture, we obtain:

\[Y = b \]

Expanding equation (5) up to second order polynomial for four component mixture, we obtain:

\[Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_{11} X_1^2 + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{14} X_1 X_4 + b_{22} X_2^2 + b_{23} X_2 X_3 + b_{24} X_2 X_4 + b_{33} X_3^2 + b_{34} X_3 X_4 + b_{44} X_4^2 + e \]

Multiplying equation 4 by \(b_i \), we obtain

\[b_i = x_1 b_1 + x_2 b_2 + x_3 b_3 + x_4 b_4 \]

Multiplying equation (4) again by \(x_i \) and re-arranging, we obtain

\[x_{i1}^2 = x_i - x_{11} - x_{21} \]

Substituting equation (7) and (8) into equation (6) and collecting like terms together, we obtain

\[Y = \theta_0 X_1 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_4 + \theta_{12} X_1 X_2 + \theta_{13} X_1 X_3 + \theta_{14} X_1 X_4 + \theta_{23} X_2 X_3 + \theta_{24} X_2 X_4 + \theta_{34} X_3 X_4 + e \]

Substituting these values into equation (1) will give the corresponding actual mix ratios, \(Z \) as:

\[0.5:0:0:0 \]

\[0.5:1:0:0 \]

\[0:0:1:0 \]

\[0:0:0:1 \]

Substitution of \(X \) and \(Z \) to equation 1 gives the values of \(A \) as:

\[A = \begin{pmatrix} 0.5 & 0.55 & 0.65 & 0.6 \\ 1 & 1 & 1 & 1 \\ 1 & 1.5 & 2 & 1.5 \\ 1 & 2 & 1.5 & 1.5 \end{pmatrix} \]

The first four mix ratios are located at the vertices of the tetrahedron simplex. Six other pseudo mix ratios located at mid points of the lines joining the vertices of the simplex are:

\[X_{12}[1/2:0:0:1/2], X_{13}[1/2:0:1/2:0], X_{14}[1/2:0:0:1/2], X_{23}[0:1/2:1/2:0], X_{24}[0:0:1/2:1/2], X_{34}[0:0:0:1/2] \]

Substituting these values into equation (1) will give the corresponding actual mix ratios, \(Z \) as:

\[Z_{1}[0.525:1.25:1.25:1.25] \]

\[Z_{2}[0.5:1.25:1.75:1.75] \]

\[Z_{3}[0.5:1.25:1.75:1.75] \]

\[Z_{4}[0.5:1.25:1.75:1.75] \]

No pseudo component according to [6] should be more than one or less than zero. The summation of all the pseudo components in a mix ratio must be equal to one [6,8]. That is:

\[0 \leq X_i \leq 1 \]

\[\sum X_i = 1 \]

The general equation for regression is given as:

\[Y = b_0 + \sum b_{ij} X_i + \sum b_{ik} X_k + \sum b_{ij} X_i X_k + \sum b_{ijk} X_i X_k X_l + \sum b_{ij} X_i X_k X_l + \sum b_{ijk} X_i X_k X_l X_m + \sum b_{ijkl} X_i X_k X_l X_m + e \]

Multiplying equation 4 by \(b_i \), we obtain

\[b_i = x_1 b_1 + x_2 b_2 + x_3 b_3 + x_4 b_4 \]

Multiplying equation (4) again by \(x_i \) and re-arranging we obtain

\[x_{i1}^2 = x_i - x_{11} - x_{21} \]

Substituting equation (7) and (8) into equation (6) and collecting like terms together, we obtain

\[Y = \theta_0 X_1 + \theta_2 X_2 + \theta_3 X_3 + \theta_4 X_4 + \theta_{12} X_1 X_2 + \theta_{13} X_1 X_3 + \theta_{14} X_1 X_4 + \theta_{23} X_2 X_3 + \theta_{24} X_2 X_4 + \theta_{34} X_3 X_4 + e \]

Where \(\theta_0 = b_0 + b_1 + b_4 \) and \(\theta_i = b_i - b_i \) and \(\theta_0 = b_0 - b_i \) without loss of generality, \(e \) is the estimated error and could be dropped from equation (9).

Hence:

\[Y = \theta_0 X_1 + \theta_2 X_2 + \theta_4 X_4 + \theta_{12} X_1 X_2 + \theta_{14} X_1 X_4 + \theta_{24} X_2 X_4 + \theta_{34} X_3 X_4 \]
Let n_i be the experimental compressive cube strength of any of the first four mix ratios, and n_{ij} be the experimental compressive strength of the remaining six mix ratios that were used in this model formulation. Substituting for n_i and the corresponding pseudo mix ratio into equation (10) gives

$$n_i = \theta_i - \text{constant}$$

In the same way substituting n_{ij} and the corresponding pseudo mix ratio into equation (10) gives $n_{ij} = 0.50i + 0.050\theta_i + 0.250\theta_{ij} - \text{constant}$ (12) Rearranging equations (11) and (12), we obtain $\theta_i = n_i - \text{constant}$ (13), $\theta_{ij} = 4n_{ij} - 2n_i - 2n_{ij} - \text{constant}$ (14)

Substituting equation (13) into equation (14) gives $\theta_i = 4n_{ij} - 2n_i - 2n_{ij} - \text{constant}$ (15)

Substituting equation (13) and (15) into equation (10) and collecting like terms will give $F(x_i) = n_{ij} x_i (1 - 2x_i - 2x_j - 2x_k) + n_{ij} x_j (1 - 2x_i - 2x_j - 2x_k) + n_{ij} x_k (1 - 2x_i - 2x_j - 2x_k) + 4n_{ij} x_i x_j + 4n_{ij} x_j x_k + 4n_{ij} x_k x_i - \text{constant}$ (16)

Now, multiplying equation (4) by 2 and subtracting 1 from both sides, we obtain

$$2x_i + 2x_j + 2x_k + 1 = 1 - 12$$

Rearranging equation (17), we obtain

$$2x_i - 1 = 1 - 2x_1 - 2x_2 - 2x_3 - \text{constant}$$

Similarly

$$2x_i - 1 = 1 - 2x_1 - 2x_2 - 2x_3 - \text{constant}$$

Substituting equation (18), (19), (20) and (21) into equation (16), we obtain

$$F(x) = n_{ij} x_i (2x_i - 1) + n_{ij} x_j (2x_j - 1) + n_{ij} x_k (2x_k - 1) + 4n_{ij} x_i x_j + 4n_{ij} x_j x_k + 4n_{ij} x_k x_i - \text{constant}$$

Equation (22) is the mathematical model equation.

PROGRAM FOR COMPRESSIVE STRENGTH

Private Sub ENDMNU_Click()
End
End Sub

Private Sub STARTMNU_Click()
Rem ONE COMPONENT

 Cls
 ' SCHEFFE'S SIMPLEX MODEL
 Print " THE PROGRAM WAS WRITTEN BY"
 Print: Print
 Print " MBADIKE ELVIS"
 Print:
 WWWWWW = InputBox("CLICK OK. TO CONTINUE"); Cls
 Print: Print " THIS PROJECT IS A RESEARCH PROJECT"
 Print: " CIVIL ENGINEERING"
 WWWWWW = InputBox("CLICK OK. TO CONTINUE"); Cls
 Print: I ACKNOWLEDGE REV. PROF. NKEMAKOLAM NWAOLISA OSADEBE"
 Print " FOR INITIATING AND SUPERVISING THIS WORK"
 WWWWWW = InputBox("CLICK OK. TO CONTINUE"); Cls

 ' CIVIL ENGINEERING DEPARTMENT, FUTO
 CT = 0: OPSTRENGTH = 0
 ReDim X(10), A(4, 4), Z(4), N(10), B(4, 4), ZZ(4): QQQ = 1

 Cls
 4 QQQ = InputBox("WHAT DO YOU WANT TO DO? TO CALCULATE MIX RATIOS GIVEN DESIRED COMPRESSIVE STRENGTH OR CALCULATING COMPRESSIVE STRENGTH GIVEN MIX RATIO?", "IF THE STRENGTH IS KNOWN TYPE 1 ELSE TYPE 0", "TYPE 1 OR 0 and CLICK OK")
If QQ <> 1 And QQ <> 0 Then EE = InputBox("No Way! You must ENTER 1 or 0", "CLICK OK and do so"): GoTo 5
If QQ = 0 Then GoTo 900
Rem *** CONVERSION MATRIX ***
A(1, 1) = 0.5: A(1, 2) = 1: A(1, 3) = 1: A(1, 4) = 1
A(2, 1) = 0.55: A(2, 2) = 1: A(2, 3) = 1.5: A(2, 4) = 2
A(3, 1) = 0.65: A(3, 2) = 1: A(3, 3) = 2: A(3, 4) = 1.5
A(4, 1) = 0.6: A(4, 2) = 1: A(4, 3) = 1.5: A(4, 4) = 1.5

YY = InputBox("WHAT IS THE DESIRED STRENGTH?"): YY = YY * 1

Rem ONE COMPONENT
Q = -5: R = 1: E = 1
50 For I = 1 To 4: X(I) = 0: Next I
X(E) = 1
If Q = 0 Then GoTo 60
GoTo 2000
55 E = E + 1: Q = Q + 1: GoTo 50
60 Rem TWO COMPONENTS
R = R + 1: F = 1: E = 2: T = 1: J = 1: W = 1: K1 = 0.9: K2 = 0.1: V = 6
65 For I = 1 To 4: X(I) = 0: Next I
X(F) = K1: X(E) = K2
If T = 6 Then GoTo 70
If F = V Then GoTo 80
If W = 5 Then GoTo 90
GoTo 2000
67 T = T + 1: K1 = K1 - 0.1: K2 = K2 + 0.1: GoTo 65
70 J = J + 1: E = E + 1: K1 = 0.9: K2 = 0.1: T = 1: GoTo 65
80 J = 1: V = V - 1: F = F + 1: E = E + 1: T = 1: W = W + 1: K1 = 0.9: K2 = 0.1: GoTo 65
90 Rem THREE COMPONENTS
R = R + 1: E = 2: T = 1: J = 1: W = 1
K1 = 0.89: K2 = 0.01: K3 = 0.1
100 For I = 1 To 5: X(I) = 0: Next I
If E = 5 Then X(2) = K3: X(1) = K1: X(E) = 0.01: GoTo 110
X(1) = K1: X(E) = 0.01: X(E + 1) = K3
110 If T = 99 Then GoTo 120
If E = 5 Then GoTo 130
If W = 10 Then GoTo 140
GoTo 2000
115 T = T + 1: X(1) = X(1) - 0.01: X(E) = X(E) + 0.01: GoTo 110
120 J = J + 1: E = E + 1: GoTo 100
130 J = 1: T = 1: W = W + 1: E = 2: K1 = K1 - 0.1: K3 = K3 + 0.1: GoTo 100
140 Rem THREE COMPONENTS CONTINUED
R = R + 1: E = 2: T = 1: J = 1: W = 1
K1 = 0.69: K2 = 0.11: K3 = 0.2
150 For I = 1 To 5: X(I) = 0: Next I
If E = 4 Then X(2) = K3: X(1) = K1: X(E) = K2: GoTo 160
X(1) = K1: X(E) = K2: X(E + 1) = K3
160 If T = 99 Then GoTo 170
If E = 4 Then GoTo 180
If W = 8 Then GoTo 190
GoTo 2000
165 T = T + 1: X(1) = X(1) - 0.01: X(E) = X(E) + 0.01: GoTo 160
170 T = 1: J = J + 1: E = E + 1: GoTo 150
180 J = 1: T = 1: W = W + 1: E = 2: K1 = K1 - 0.1: K3 = K3 + 0.1: GoTo 150
190 Rem FOUR COMPONENTS
R = R + 1: E = 2: T = 1: J = 1: W = 1
K1 = 0.79: K2 = 0.01: K3 = 0.1: K4 = 0.1

200 For I = 1 To 5: X(I) = 0: Next I
If E = 4 Then X(1) = K1: X(2) = K4: X(E) = K2: X(E + 1) = K3: GoTo 210
If E = 5 Then X(1) = K1: X(2) = K3: X(3) = K4: X(E) = K2: GoTo 210
X(1) = K1: X(E) = K2: X(E + 1) = K3: X(E + 2) = K4
210 If T = 99 Then GoTo 220
If W = 9 Then GoTo 240
GoTo 2000

215 T = T + 1: X(1) = X(1) - 0.01: X(E) = X(E) + 0.01: GoTo 210
220 T = 1: J = J + 1: E = E + 1: GoTo 200
230 J = 1: T = 1: W = W + 1: E = 2: K1 = K1 - 0.1: K4 = K4 + 0.1: GoTo 200

Rem FOUR COMPONENTS CONTINUED

240 R = R + 1: E = 2: T = 1: J = 1: W = 1
K1 = 0.59: K2 = 0.01: K3 = 0.2: K4 = 0.2
250 For I = 1 To 4: X(I) = 0: Next I
If E = 4 Then X(1) = K1: X(2) = K4: X(E) = K2: X(E + 1) = K3: GoTo 260
X(1) = K1: X(E) = K2: X(E + 1) = K3: X(E + 2) = K4
260 If T = 99 Then GoTo 270
If W = 7 Then GoTo 290
GoTo 2000

265 T = T + 1: X(1) = X(1) - 0.01: X(E) = X(E) + 0.01: GoTo 260
270 T = 1: J = J + 1: E = E + 1: GoTo 250
280 J = 1: T = 1: W = W + 1: E = 2: K1 = K1 - 0.1: K4 = K4 + 0.1: GoTo 250

290 Rem FOUR COMPONENTS CONTINUED AGAIN

R = R + 1: E = 2: T = 1: J = 1: W = 1
K1 = 0.29: K2 = 0.01: K3 = 0.4: K4 = 0.3
300 For I = 1 To 4: X(I) = 0: Next I
If E = 4 Then X(1) = K1: X(2) = K4: X(E) = K2: X(E + 1) = K3: GoTo 310
X(1) = K1: X(E) = K2: X(E + 1) = K3: X(E + 2) = K4
310 If T = 99 Then GoTo 320
If W = 7 Then GoTo 340
GoTo 2000

315 T = T + 1: X(1) = X(1) - 0.01: X(E) = X(E) + 0.01: GoTo 310
320 T = 1: J = J + 1: E = E + 1: GoTo 300
330 J = 1: T = 1: W = W + 1: E = 2: K1 = K1 - 0.1: K4 = K4 + 0.1: GoTo 300
340 Rem FOUR COMPONENTS CONTINUED AGAIN AGAIN
R = R + 1: E = 2: T = 1
350 For I = 1 To 4: X(I) = 0.25: Next I
X(E) = 0
360 If T = 6 Then GoTo 370
GoTo 2000

365 T = T + 1: E = E + 1: GoTo 350
Rem PRINTING OF RESULTS
For I = 1 To 4: Z(I) = 0: Next I
For I = 1 To 4: For JJ = 1 To 4: Z(I) = Z(I) + A(I, JJ) * X(JJ): Next JJ: Next I
If Z(1) < 0 Or Z(2) < 0 Or Z(3) < 0 Or Z(4) < 0 Then GoTo 830
If X(1) < 0 Or X(2) < 0 Or X(3) < 0 Or X(4) < 0 Then GoTo 830
If X(1) > 1 Or X(2) > 1 Or X(3) > 1 Or X(4) > 1 Then GoTo 830
'If Z(2) + Z(3) < 1 Then GoTo 830

Rem PRINTING OF RESULTS
For I = 1 To 4: Z(I) = 0: Next I
For I = 1 To 4: For JJ = 1 To 4: Z(I) = Z(I) + A(I, JJ) * X(JJ): Next JJ: Next I
If Z(1) < 0 Or Z(2) < 0 Or Z(3) < 0 Or Z(4) < 0 Then GoTo 830
If X(1) < 0 Or X(2) < 0 Or X(3) < 0 Or X(4) < 0 Then GoTo 830
If X(1) > 1 Or X(2) > 1 Or X(3) > 1 Or X(4) > 1 Then GoTo 830
'If Z(2) + Z(3) < 1 Then GoTo 830
If \(Z(2) > 1 \) Then GoTo 830
\[
Y = X(1) \times (1 - 2 \times X(2) - 2 \times X(3) - 2 \times X(4) - N1 + X(2) \times (1 - 2 \times X(1) - 2 \times X(3) - 2 \times X(4) - N2 + X(3)) + 4 \times N6 \times X(1) \times X(2) + 4 \times N7 \times X(1) \times X(3)
\]
\[
Y = Y + X(4) \times (1 - 2 \times X(1) - 2 \times X(2) - 2 \times X(3) - N4 + X(3) \times (1 - 2 \times X(1) - 2 \times X(2) - 2 \times X(3) - 2 \times X(4) - N5 + X(3)) + 4 \times N8 \times X(1) \times X(4) + 4 \times N9 \times X(1) \times X(5) + 4 \times N10 \times X(2) \times X(3)
\]
If \(Y > \text{OPSTRENGTH} \) Then For I = 1 To 4: ZZ(I) = 0: Next I
If \(Y > \text{OPSTRENGTH} \) Then OPSTRENGTH = Y: For I = 1 To 4: For JJ = 1 To 4: ZZ(I) = ZZ(I) + A(I, JJ) * X(JJ): Next JJ: Next I
If \(Y > YY - 0.05 \) And \(Y < YY + 0.05 \) Then GoTo 810 Else GoTo 830

810 CT = CT + 1
For I = 1 To 4: Z(I) = 0: Next I
For I = 1 To 4
For JJ = 1 To 4
Z(I) = Z(I) + A(I, JJ) * X(JJ)
Next JJ
Next I

If \(Z(2) > 1.01 \) Or \(Z(2) < 0.9998 \) Then GoTo 830
If \(Z(1) < 0 \) Or \(Z(2) < 0 \) Or \(Z(3) < 0 \) Or \(Z(4) < 0 \) Or \(Z(4) < 0 \) Then GoTo 830
If \(\text{QQQ} = 25 \) Then \(\text{QQQQ} = \text{InputBox("PRESS OK TO CONTINUE", , , 5500, 8500)} \): \(\text{QQQ} = 1 \): Cls \(\text{QQQ} = \text{QQQ} + 1 \)

820 Print " Y = "; Format(Y, "0.00")., Print " WATER "; Format(Z(1), "0.00")., Print " CEMENT "; Format(Z(2), "0.00")., Print " LT "; Format(Z(3), "0.00")., Print " CA "; Format(Z(4), "0.00").;

830 If R = 1 Then GoTo 55
If R = 2 Then GoTo 67
If R = 3 Then GoTo 115
If R = 4 Then GoTo 165
If R = 5 Then GoTo 215
If R = 6 Then GoTo 265
If R = 7 Then GoTo 315
If R = 8 Then GoTo 365
If R = 9 Then GoTo 395
If R = 10 Then GoTo 455
If R = 11 Then GoTo 515
If R = 12 Then GoTo 525

2100 Print: Print
If CT = 0 Then Print " *** SORRY THE HARDNESS IS OUTSIDE THE FACTOR SPACE ***"
Print: Print
Print " OPTIMUM STRENGTH PREDICTABLE BY THIS MODEL IS ", Print OPSTRENGTH: Print
Print " THE CORRESPONDING MIXTURE RATIO IS AS FOLLOWS:" Print
Print " WATER "; ZZ(1); " CEMENT "; ZZ(2); " LT "; ZZ(3); Print " CA "; ZZ(4); "
GoTo 22222

900 Cls
Y = 0
For I = 1 To 5: X(I) = 0: Next I
Rem *** RESPONSE AT THE CHOSEN 10 POINTS ON THE FACTOR SPACE FOR THE MODEL ***

N1 = 21.48; N2 = 13.63; N3 = 14.96; N4 = 18.07; N5 = 19.85
To validate the model, extra ten mix ratios (control) were determined and used in the ANOVA test. The aim of the test was to ascertain whether the difference between the results of compressive strength from experiment and model was significant or not. If the different between the two results is significant, alternative hypothesis will be adopted. If the different between the two results is not significant, null hypothesis will be adopted. The mix ratios are shown in Table 1:

<table>
<thead>
<tr>
<th>Points</th>
<th>Water</th>
<th>Cement</th>
<th>Laterite</th>
<th>Granite</th>
<th>Water</th>
<th>Cement</th>
<th>Laterite</th>
<th>Granite</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.575</td>
<td>1</td>
<td>1.5</td>
<td>1.75</td>
</tr>
<tr>
<td>C2</td>
<td>0.15</td>
<td>0.15</td>
<td>0.35</td>
<td>0.35</td>
<td>0.595</td>
<td>1</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>C3</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.565</td>
<td>1</td>
<td>1.4</td>
<td>1.35</td>
</tr>
<tr>
<td>C4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.34</td>
<td>1</td>
<td>1.65</td>
<td>1.5</td>
</tr>
<tr>
<td>C5</td>
<td>0.25</td>
<td>0.3</td>
<td>0.25</td>
<td>0.2</td>
<td>0.5725</td>
<td>1</td>
<td>1.5</td>
<td>1.525</td>
</tr>
<tr>
<td>C6</td>
<td>0.16</td>
<td>0.34</td>
<td>0.22</td>
<td>0.28</td>
<td>0.578</td>
<td>1</td>
<td>1.53</td>
<td>1.59</td>
</tr>
<tr>
<td>C7</td>
<td>0.17</td>
<td>0.31</td>
<td>0.25</td>
<td>0.27</td>
<td>0.59</td>
<td>1</td>
<td>1.54</td>
<td>1.57</td>
</tr>
<tr>
<td>C8</td>
<td>0.32</td>
<td>0.18</td>
<td>0.33</td>
<td>0.17</td>
<td>0.575</td>
<td>1</td>
<td>1.505</td>
<td>1.43</td>
</tr>
<tr>
<td>C9</td>
<td>0.26</td>
<td>0.34</td>
<td>0.30</td>
<td>0.10</td>
<td>0.572</td>
<td>1</td>
<td>1.52</td>
<td>1.54</td>
</tr>
<tr>
<td>C10</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0</td>
<td>0.55</td>
<td>1</td>
<td>1.375</td>
<td>1.375</td>
</tr>
</tbody>
</table>

Table 1: Pseudo and actual mix ratios for the control test
Compressive strength test: The materials used for this test includes:
- Granite, which is free from deleterious substance with a maximum size of 20mm.
- The cement used is dangote cement which is a brand of Ordinary Portland Cement and conform [17].
- The laterite used was obtained from Nekede in Owerri North L.G.A of Imo State; Nigeria.
- The water used is clean water from bore-hole.

The materials were batched by weight. Mixing was done manually using spade and hand trowel. 150mm x 150mm x 150mm concrete moulds were used for casting the concrete cubes. The concrete cubes were cured in water for 28 days. At the end of the hydration period the cubes were crushed and their compressive strength were determined according to the requirement of (BS [18]).

RESULTS AND DISCUSSION

The compressive strength test results are shown in table 2. Higher compressive strength was recorded at point 23 (25.04N/mm2). Although the mix ratio of 0.6:1:1.75:1.75 had low cement content, the high water/cement ratio of 0.6 seemed to be the major reason for this. Point 1 should have given higher compressive strength going by its high cement content but it had low water cement ratio of 0.5. It could be observed that water/cement ratio and cement content were not the only factors responsible for the behaviour of the compressive strength. This is so because the strength at point 23 is higher than that at point 1 irrespective of the fact that point 1 has lower water/cement ratio and higher cement content than point 23. According to Ezeh, Ibearugbulem [11], the highest compressive strength predicted by the application of Sheffe’s model in optimization of compressive strength of River Stone aggregate concrete is 37.62N/mm2 when the mix ratio is 0.5:1:2.4:3.6 (water-cement ratio, cement, river sand, river stone). Also the result obtained when Osadebe’s model [15] was used to predict the compressive strength of concrete containing water-cement ratio, cement, fine aggregate, coarse aggregate in a mix ratio of 0.6:1:0.7:2.5 is 25.39N/mm2. These results shows that both Sheffe and Osadebe’s model can be used in the optimization of compressive strength of concrete containing four or five mixture ingredients.

Table 2: Compressive strength results

<table>
<thead>
<tr>
<th>Points</th>
<th>Replicate 1 (N/mm2)</th>
<th>Replicate 2 (N/mm2)</th>
<th>Replicate 3 (N/mm2)</th>
<th>Average compressive strength (N/mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.69</td>
<td>23.40</td>
<td>21.36</td>
<td>21.48</td>
</tr>
<tr>
<td>2</td>
<td>13.58</td>
<td>11.82</td>
<td>15.50</td>
<td>13.63</td>
</tr>
<tr>
<td>3</td>
<td>17.10</td>
<td>14.00</td>
<td>13.78</td>
<td>14.96</td>
</tr>
<tr>
<td>4</td>
<td>17.00</td>
<td>19.30</td>
<td>17.91</td>
<td>18.07</td>
</tr>
<tr>
<td>12</td>
<td>18.90</td>
<td>20.90</td>
<td>19.76</td>
<td>19.85</td>
</tr>
<tr>
<td>13</td>
<td>25.40</td>
<td>17.15</td>
<td>21.00</td>
<td>21.18</td>
</tr>
<tr>
<td>14</td>
<td>12.60</td>
<td>20.20</td>
<td>16.09</td>
<td>16.30</td>
</tr>
<tr>
<td>23</td>
<td>24.76</td>
<td>22.05</td>
<td>28.31</td>
<td>25.04</td>
</tr>
<tr>
<td>24</td>
<td>20.45</td>
<td>15.78</td>
<td>26.00</td>
<td>20.74</td>
</tr>
<tr>
<td>34</td>
<td>17.72</td>
<td>24.15</td>
<td>19.90</td>
<td>20.59</td>
</tr>
<tr>
<td>C1</td>
<td>17.52</td>
<td>26.10</td>
<td>20.81</td>
<td>21.48</td>
</tr>
<tr>
<td>C2</td>
<td>29.10</td>
<td>22.85</td>
<td>28.92</td>
<td>26.96</td>
</tr>
<tr>
<td>C3</td>
<td>21.90</td>
<td>28.10</td>
<td>23.33</td>
<td>24.44</td>
</tr>
<tr>
<td>C4</td>
<td>5.60</td>
<td>3.70</td>
<td>4.03</td>
<td>4.44</td>
</tr>
<tr>
<td>C5</td>
<td>20.45</td>
<td>29.10</td>
<td>26.90</td>
<td>25.48</td>
</tr>
<tr>
<td>C6</td>
<td>25.60</td>
<td>18.21</td>
<td>25.98</td>
<td>23.26</td>
</tr>
<tr>
<td>C7</td>
<td>26.41</td>
<td>24.00</td>
<td>19.81</td>
<td>23.41</td>
</tr>
<tr>
<td>C8</td>
<td>20.75</td>
<td>25.15</td>
<td>27.00</td>
<td>24.30</td>
</tr>
<tr>
<td>C9</td>
<td>19.85</td>
<td>27.74</td>
<td>23.96</td>
<td>23.85</td>
</tr>
<tr>
<td>C10</td>
<td>23.90</td>
<td>19.08</td>
<td>25.90</td>
<td>22.96</td>
</tr>
</tbody>
</table>

The ANOVA test of the generated data are shown in table 3.

The $S_E^2 = \frac{\sum(YT - YAT)^2}{N-1} = \frac{157.5374}{9} = 17.504$

The $S_T^2 = \frac{\sum(YE - YAE)^2}{N-1} = \frac{364.4661}{9} = 40.496$

Hence $S_T^2 = S_E^2 = 40.496$
\[S_1^2 = S_2^2 = 17.504 \]
\[\therefore S_1^2 = \frac{40.496}{17.504} \]
\[F\text{-value from table is } F_\alpha (V_1, V_2) \]
\[= F_{0.05} (9,9) = 3.18 \]
\[0.3145 < F_{0.05} (9,9) = 3.18 \]

Therefore, the difference between the experiment result and the model result was not significant. Hence, the model is adequate for use in predicting the probable compressive strength when the mix ratio is known and vice-versa.

<table>
<thead>
<tr>
<th>Points</th>
<th>YE</th>
<th>YT</th>
<th>YE-YAE</th>
<th>YT-YAT</th>
<th>(YE-YAE)²</th>
<th>(YT-YAT)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>21.48</td>
<td>21.48</td>
<td>-0.578</td>
<td>1.696</td>
<td>0.3341</td>
<td>2.6764</td>
</tr>
<tr>
<td>C₃</td>
<td>24.44</td>
<td>14.96</td>
<td>2.382</td>
<td>-4.824</td>
<td>5.6739</td>
<td>23.2718</td>
</tr>
<tr>
<td>C₄</td>
<td>4.44</td>
<td>18.07</td>
<td>-17.618</td>
<td>-1.714</td>
<td>310.394</td>
<td>2.9378</td>
</tr>
<tr>
<td>C₅</td>
<td>25.48</td>
<td>19.85</td>
<td>3.422</td>
<td>0.066</td>
<td>11.710</td>
<td>0.00436</td>
</tr>
<tr>
<td>C₆</td>
<td>23.26</td>
<td>21.18</td>
<td>1.202</td>
<td>1.406</td>
<td>1.4448</td>
<td>1.9768</td>
</tr>
<tr>
<td>C₇</td>
<td>23.41</td>
<td>16.30</td>
<td>1.352</td>
<td>-3.484</td>
<td>1.8279</td>
<td>12.1383</td>
</tr>
<tr>
<td>C₈</td>
<td>24.30</td>
<td>25.04</td>
<td>2.242</td>
<td>5.256</td>
<td>5.0265</td>
<td>27.6255</td>
</tr>
<tr>
<td>C₉</td>
<td>23.85</td>
<td>26.74</td>
<td>1.792</td>
<td>6.956</td>
<td>3.2113</td>
<td>48.3859</td>
</tr>
<tr>
<td>C₁₀</td>
<td>22.96</td>
<td>20.59</td>
<td>0.902</td>
<td>0.806</td>
<td>0.8136</td>
<td>0.6496</td>
</tr>
<tr>
<td>Total</td>
<td>220.58</td>
<td>197.84</td>
<td>364.4661</td>
<td>157.5374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>22.058</td>
<td>19.784</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: YE = experimental strength; YAE = average of the experimental strength.
YT = the model strength; YAT = average of the model strength
N = number of points of observation
V = degree of freedom, \(\alpha \) = significant level.

CONCLUSION

It was concluded that the highest compressive strength predicted by this model is 25.04\text{N/mm}^2. The corresponding mix ratio is 0.6:1:1.75:1.75 [water, cement, laterite granite]. Again, the sheffe's model formulated was adequate and reliable at 5% risk for predicting the compressive strength of concrete made with the above mentioned materials.

REFERENCES

Citation of this article