On The Homogeneous Bi-quadratic Equation with Five Unknowns

M.A. Gopalan, S. Vidyalakshmi, A. Kavitha, E. Premalatha
Department of Mathematics, Shrimati Indira Gandhi College
Tiruchirappalli – 620002
Email: mayilgopalan@gmail.com

ABSTRACT

The Bi-quadratic Equation with 5 unknown given by \(x^4 - y^4 = 5(z^2 - w^2)R^2 \) is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Key words: Quadratic equation, Integral solutions, Special polygonal numbers, Pyramidal numbers.

Received 11.09.2013 Accepted 05.09.2013

INTRODUCTION

Bi-quadratic Diophantine Equations, homogeneous and non-homogeneous, have aroused the interest of numerous Mathematicians since ambiguity as can be seen from [1-7]. In the context one may refer [8-20] for varieties of problems on the Diophantine equations with two, three and four variables. This communication concerns with the problems of determining non-zero integral solutions of yet another quadratic equation in 5 unknowns represented by \(x^4 - y^4 = 5(z^2 - w^2)R^2 \). A few interesting relations between the solutions and special polygonal numbers are presented.

NOTATIONS USED

- \(t_{m,n} \) - Polygonal number of rank \(n \) with size \(m \).
- \(P^n_m \) - Pyramidal number of rank \(n \) with size \(m \).
- \(cP^n_{m,n} \) - Centered polygonal number of rank \(n \) with size \(m \).
- \(g^n_a \) - Gnomonic number of rank \(a \)
- \(s^n_o \) - Stella octangular number of rank \(n \)
- \(s^n \) - Star number of rank \(n \)
- \(p^n_r \) - Pronic number of rank \(n \)
- \(p^n_t \) - Pentatope number of rank \(n \)
- \(CP^n_{m,n} \) - Centered pyramidal number of rank \(n \) with size \(m \)

METHOD OF ANALYSIS

The Diophantine equation representing the bi-quadratic equation with five unknowns under consideration is

\[x^4 - y^4 = 5(z^2 - w^2)R^2 \] (1)

The substitution of the linear transformations

\[x = u + v, \ y = u - v, \ z = 2u + v, \ w = 2u - v \] (2)
in (1) leads to \[u^2 + v^2 = 5R^2 \] \tag{3}

Different patterns of solutions of (1) are presented below.

Pattern - 1

Assume \(R = a^2 + b^2 \) where \(a \) and \(b \) are non-zero distinct integers. \tag{4}

Write 5 as \(5 = (2 + i)(2 - i) \) \tag{5}

Using (4) & (5) in (3) and employing the method of factorization, define

\[u + iv = (2 + i)(a + ib)^2 \]

Equating the real and imaginary parts, we get

\[u = u(a, b) = 2a^2 - 2b^2 - 2ab \]
\[v = v(a, b) = a^2 - b^2 + 4ab \]

Hence in view of (2) the corresponding solutions of (1) are

\[x = x(a, b) = 3a^2 - 3b^2 + 2ab \]
\[y = y(a, b) = a^2 - b^2 - 6ab \]
\[z = z(a, b) = 5a^2 - 5b^2 \]
\[w = w(a, b) = 3a^2 - 3b^2 - 8ab \]
\[R = R(a, b) = a^2 + b^2 \]

A few interesting properties observed are as follows:

1. \(x(a, a(a+1)) - 3y(a, a(a+1)) = 40p_5^5 \)
2. \(z(a, b) - 5y(a, b) \equiv 0 \pmod{30} \)
3. \(x(a, (a+1)(a+2)) - w(a, (a+1)(a+2)) = 60p_5^3 \)
4. \(z(a, b) + R(a, b) = Nastynumber - t_{4,2b} \)

5. Each of the following represents a nasty number:
 - \(3\{y(a, 2a^2 - 1) + R(a, 2a^2 - 1) + 6SO_a\} \)
 - \(75R(a, b) + 15z(a, b) \)
 - \(z(a, a) - y(a, a) \)

Pattern-2:

Instead of (4) write 5 as

\[5 = (1 + 2i)(1 - 2i) \] \tag{6}

Following a similar procedure as in pattern-1, the solutions for (3) are as follows

\[
\begin{aligned}
 u &= u(a, b) = a^2 - b^2 - 4ab \\
 v &= v(a, b) = 2a^2 - 2b^2 + 2ab
\end{aligned}
\] \tag{7}
In view of (2) and (7) the solutions of (1) are obtained as
\[x = x(a, b) = 3a^2 - 3b^2 - 2ab \]
\[y = y(a, b) = -a^2 + b^2 - 6ab \]
\[z = z(a, b) = 4a^2 - 4b^2 - 6ab \]
\[w = w(a, b) = -10ab \]
\[R = R(a, b) = a^2 + b^2 \]

Properties:
1. \(x(a, b) + 3y(a, b) = 2w(a, b) \equiv 0 \pmod{20} \)
2. \(-z(a, 2a^2 + 1) - 4y(a, 2a^2 + 1) = 90(Oh_a) \)
3. \(x(a, b) - y(a, b) - z(a, b) + w(a, b) = 0 \)
4. \(x(a, a^2) + y(a, a^2) = 2(t_{4, a} - t_{4, a^2}) + CP_{6, 2a} \)
5. Each of the following represents a nasty number:
 - \(3\{ -y(a, a) - R(a, a) - 2t_{4, a} \} \)
 - \(-y(a, a) \) and \(-z(a, a) \)

Pattern-3:
In addition to (4) and (6), write 5 as
\[5 = \frac{1}{25}(11 + 2i)(11 - 2i) \]

Following the procedure as in pattern-2, the solutions for (3) are as follows
\[u = u(a, b) = \frac{1}{5}(11a^2 - 11b^2 - 4ab) \]
\[v = v(a, b) = \frac{1}{5}(2a^2 - 2b^2 + 22ab) \]

Hence the corresponding solutions of (1) are
\[x = x(a, b) = \frac{1}{5}(13a^2 - 13b^2 + 18ab) \]
\[y = y(a, b) = \frac{1}{5}(9a^2 - 9b^2 - 26ab) \]
\[z = z(a, b) = \frac{1}{5}(24a^2 - 24b^2 + 14ab) \]
\[w = w(a, b) = \frac{1}{5}(20a^2 - 20b^2 - 30ab) \]

As our interest on finding integer solutions, we choose a and b suitably so that the values of \(x, y, z, w \) are integers.

Illustration I:
Let \(a = 5A \) and \(b = 5B \)

Thus the corresponding solutions of (1) are
In view of (2) and (11), the solutions of (1) are obtained as

\[
\begin{align*}
x & = x(a, b) = 15a^2 + b^2 + 10ab \\
y & = y(a, b) = -5a^2 - 3b^2 - 10ab \\
z & = z(a, b) = 20a^2 + 10ab \\
w & = w(a, b) = -4b^2 - 10ab \\
R & = R(a, b) = 5a^2 + b^2 + 4ab
\end{align*}
\]
Properties:

1. $z(a, b) + w(a, b) = 2(x(a, b) + y(a, b)) \equiv 0 \pmod{4}$
2. $x(a, -1) - R(a, -1) = 4t_{a,b}$
3. $x(a, b) - y(a, b) - z(a, b) - t_{a,b} \equiv 0 \pmod{10}$
4. Each of the following represents a nasty number:
 - $3\{x(a, a) + y(a, a)\}$
 - $x(a, a) + y(a, a) + z(a, a) + w(a, a)$

Pattern-5:

Instead of (9), write $1 = \frac{1}{4}(\sqrt{5} + 1)(\sqrt{5} - 1)$

Following the same procedure as in pattern-4, the solutions for (3) are as follows

$$R = R(a, b) = \frac{1}{2}(5a^2 + b^2 + 2ab)$$
$$v = v(a, b) = \frac{1}{2}(5a^2 + b^2 + 10ab)$$

(12)

In view of (2) and (12), the solutions of (1) are

$$x = x(a, b) = \frac{1}{2}(15a^2 - b^2 + 10ab)$$
$$y = y(a, b) = \frac{1}{2}(5a^2 - 3b^2 - 10ab)$$
$$z = z(a, b) = \frac{1}{2}(25a^2 - 3b^2 + 10ab)$$
$$w = w(a, b) = \frac{1}{2}(15a^2 - 5b^2 - 10ab)$$
$$R = R(a, b) = \frac{1}{2}(5a^2 + b^2 + 2ab)$$

The values of x, y, z, w and R are integers when both a and b are of the same parity.

Case- I:

Consider $a = 2A$ and $b = 2B$

Thus the corresponding solutions of (1) are

$$x = x(A, B) = 30A^2 - 2B^2 + 20AB$$
$$y = y(A, B) = 10A^2 - 6B^2 - 20AB$$
$$z = z(A, B) = 50A^2 - 6B^2 + 20AB$$
$$w = w(A, B) = 30A^2 - 10B^2 - 20AB$$
$$R = R(A, B) = 10A^2 + 2B^2 + 4AB$$

Case- II:

Put $a = 2A + 1$ and $b = 2B + 1$
Hence the corresponding solutions of (1) are

\[x = x(A, B) = 30A^2 - 2B^2 + 40A + 8B + 20AB + 12 \]
\[y = y(A, B) = 10A^2 - 6B^2 - 16B - 20AB - 4 \]
\[z = z(A, B) = 50A^2 - 6B^2 + 60A + 4B + 20AB + 16 \]
\[w = w(A, B) = 30A^2 - 10B^2 + 20A - 20B - 20AB \]
\[R = R(A, B) = 10A^2 + 2B^2 + 12A + 4B + 4AB + 4 \]

Properties:
1. \(x(a, b) + y(a, b) + z(a, b) + w(a, b) \equiv 0 \!(\text{mod} \, 6) \)
2. \(x(a, -1) + R(a, -1) = 4a \)
3. \(z(a(a + 1), 2a + 1) \equiv x(a(a + 1), 2a + 1) + y(a(a + 1), 2a + 1) - R(a(a + 1), 2a + 1) = 24P^a \)
4. \(3R(b + 1, b) - 3y(b + 1, b) - 36t_{a,b} \) is a nasty number.

Pattern 6:

Introduction of the linear transformations

\[R = X + T \quad v = X + 5T \quad u = 2U \quad (13) \]

in (3) leads to \(U^2 = X^2 - 5T^2 \)

which is satisfied by

\[X = r^2 + 5s^2 \]
\[u = 2(r^2 - 5s^2) \]
\[T = 2rs \]

Substituting the above values of \(X, u \) and \(T \) in (13), the corresponding non-zero distinct integral solutions of (3) are given by

\[R = R(a, b) = r^2 + 5s^2 + 2rs \]
\[v = v(a, b) = r^2 + 5s^2 + 10rs \]

Thus the corresponding solutions of (1) are found to be

\[x = x(a, b) = 3r^2 - 5s^2 + 10rs \]
\[y = y(a, b) = r^2 - 15s^2 - 10rs \]
\[z = z(a, b) = 5r^2 - 15s^2 + 10rs \]
\[w = w(a, b) = 3r^2 - 25s^2 - 10rs \]
\[R = R(a, b) = r^2 + 5s^2 + 2rs \]

Properties:
1. \(x(1, s) - w(1, s) = 2(24_2a, s - 1) \)
2. \(x(r, s) + y(r, s) + z(r, s) + w(r, s) \equiv 0 \!(\text{mod} \, 12) \)
3. \(x(r, r(r + 1)) + R(r, r(r + 1)) = t_{1, 2r} + 6P^r \)
4. \(z(r,s) - R(r,s) \equiv 0 \pmod{4}\)

5. Each of the following represents a nasty number:
 - \(-y(r,r) - z(r,r)\)
 - \(3\{x(r,s) + w(r,s) - y(r,s) - z(r,s)\}\)

REMARKABLE OBSERVATIONS

I: \(\left[\frac{2P_x^{\frac{1}{3}}}{t_{4,x-1}} \right]^4 - \frac{36P_y^{\frac{1}{3}}}{S_{y-2} - 1} \equiv 0 \pmod{5}\)

II: \(\left[5 \left(\frac{4P_x^{\frac{1}{3}}}{P_{z-3}^{\frac{1}{3}}} \right)^2 - 5 \left(\frac{6P_{z-1}^{\frac{1}{3}}}{t_{6,w+1}} \right)^2 \right] \left(\frac{t_{4,w-1}}{gn_w} \right)^2 + \left[\frac{3P_y}{t_{3,y}} \right]^4\) is a bi-quadratic integer.

III: \(30 \left(\frac{4P_x^{\frac{1}{3}}}{C_t_{4,x-1}} \right)^4 - 30 \left(\frac{P_{z-1}^{\frac{1}{3}}}{t_{3,y-1}} \right)^4 - \left(\frac{P_{z-1}^{\frac{1}{3}}}{t_{3,z}} \right)^4 + 150 \left(\frac{CP_{w-1}}{t_{4,w}} \right)^2 \left(\frac{6P_{z-1}^{\frac{1}{3}}}{t_{3,2w-2}} \right)^2\) is a nasty number.

IV: If the non-zero integer quintuple \((x_0, y_0, z_0, w_0, R_0)\) is any solution of (1) then the quintuple \((x_n, y_n, z_n, w_n, R_n)\)

where

\[
x_n = u_0 + \tilde{y}_{n-1}v_0 + 5\tilde{x}_{n-1}R_0
\]
\[
y_n = u_0 - \tilde{y}_{n-1}v_0 - 5\tilde{x}_{n-1}R_0
\]
\[
z_n = 2u_0 + \tilde{y}_{n-1}v_0 + 5\tilde{x}_{n-1}R_0
\]
\[
w_n = 2u_0 - \tilde{y}_{n-1}v_0 - 5\tilde{x}_{n-1}R_0
\]
\[
R_n = \tilde{y}_{n-1}R_0 + \tilde{x}_{n-1}v_0
\]

also satisfies (1).In the above , \(u_0, v_0, R_0\) are the initial solutions of (3) and \((\tilde{x}_{n-1}, \tilde{y}_{n-1})\) is the solution of the pellian \(y^2 = 5x^2 + 1\)

Note:

In linear transformations (2), the variables \(z\) and \(w\) may also be represented by
\(z = 2uv + 1\) , \(w = 2uv - 1\)

Applying the procedure similar to that presented above in patterns 1 to 6, other choices of integer solutions of (1) are obtained.

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCE

8. Cohn J.H.E., (1971), The Diophantine equation \(x^4 + 2x^2 + 1 = y^2 \) \(y/(y + 2)(y + 3) = 2x(x + 1)(x + 2)(x + 3) \) Pacific J.Math. 37, 331-335.

9. Mihailov, (1973), On the equation \(x(x + 1) = y(y + 1)z^2 \), Gaz. Mat. Sec.A 78, 28-30

11. Cross J.T., (1993), In the Gaussian Integers \(\alpha^4 + \beta^4 \neq \gamma^4 \), Math. Magazine.66, P.105-108,

12. Sandorszobo,(2004), some fourth degree Diophantine equation in Gaussian integers: Electronic Journal of combinatorial Number theory, Vol 4, P.1-17,
