Community Consultations on use and Management of Preferred NTFPs: A Case Study of the Four Ecological Zones of Swaziland

Cliff S. Dlamini* and Coert J. Geldenhuys

*Department of Forest and Wood Science, Faculty of Agrisciences, University of Stellenbosch, P/B X1, Matieland 7602, South Africa.

*Corresponding author. Tel. +268 76766112: Fax +268 25185276.
Email: csdlamini@uniswa.sz

ABSTRACT

Traditional forest management systems were part of daily life in the natural forest and woodland resources in olden days Swaziland. The objective of the study was to embark on community consultations to collect information on the communities’ perception of preferred edible and medicinal NTFPs, their direct uses, the existing management strategies, and the threats to forest biodiversity and the domestication and commercialization initiatives. Group discussions, individual perceptions and review of national forest policy were undertaken. The findings indicated that local communities lack knowledge of the existing policies and legislation that safeguard the sustainable use of NTFPs in the adjacent natural forests and woodlands, and further stated that there are no existing traditional local-level NTFP management systems. Uncontrolled trade in NTFPs, by non-resident collectors, in Swaziland has been seen to be one of the predominant threats to forest biodiversity. This reafirms the weak and ineffective national policies and legislation, and shows that the existing policies and legislation are not implementable. The positive side is that local communities have identified potential threats to forest biodiversity. All local communities are willing to participate in the conservation and sustainable use of the adjacent natural forests and woodlands. Most local communities already have initiatives towards selection of top priority species for domestication and commercialization. The institutional, cultural, socio-economic, ecological/environmental and policy issues raised by local communities are crucial and essential elements for the formulation and development of guidelines for local-level sustainable management and development of NTFPs. Proper and innovative policies and legislation need to be put in place to cope with the current challenges.

Keywords: Natural forests; Natural woodlands; Forest products; Sustainability; National forest policies; Forest management; Community participation; Forest biodiversity

INTRODUCTION

In Swaziland natural forests and woodlands are facing great loss of biodiversity due to uncontrolled, unsustainable forest products extraction. This shows that resource management and research programmes are not effective. This is mainly because ecological, economic and social planning and research are unco-ordinated and done in isolation from each other (Geldenhuys, 2002, 2003, 2004; Dlamini, 2007, 2010a). Furthermore, it is clear that the current control mechanisms and policy and legislation are failing to prevent forest degradation, and one option to save this situation could be to embark on more comprehensive ecological research for a sound scientific understanding of natural forests and woodlands in order to be able to design successful sustainable forest management strategies (Geldenhuys, 2002; Dlamini, 2007).

New approaches to forest sustainability anywhere have developed strong partnerships between academia, government, the environmental community and the industry and this has proved to be the most successful remedy (Abubakr et al., 1997; Crafter et al., 1997; GOS, 2002a; Dlamini, 2007). Sustainable forestry is achievable when the needs of landowners and managers are balanced with the ecological capacity of the forest ecosystem. In view of the complexity and dynamic nature of social and natural systems, sustainable forestry must be flexible and adaptable necessitating adaptive management (Abubakr et al., 1997; Crafter et al., 1997; Geldenhuys, 2002, 2003; Dlamini, 2007). University researchers, industry and natural resource agencies will have time to develop long-term partnerships for evaluating the criteria and indicators of sustainable forest management (Abubakr et al, 1997; Crafter et al., 1997; 2002a; Dlamini, 2007)

All stakeholders in the forestry sector have a role to play in long-term sustainability of the resources, and these include local communities (adjacent to the natural forests and woodlands), forest industries (in commercial forestry), municipalities (involved with urban forestry/greening), government (policy makers) and other interested parties (Abubakr et al., 1997; Crafter et al., 1997; Prasad, 1999; GOS, 2002a; Nibbering and Samyn, 2002; Sreedharan, 2002; Dlamini and Geldenhuys, 2011a).
Community participation in forest management is the trend in Africa and beyond (Crafter et al., 1997; Wily, 2002; Geldenhuys, 2003). A recent overview showed that participatory forest management (PFM) in Africa is sufficiently widespread and effective to be recognized as a significant route towards securing and sustaining forests (Wily, 2002). While each state is striving for more participatory approaches to especially natural forest management, broad commonalities among the processes and paradigms are notable. The issue of PFM is in short democratisation in the forestry sector, which is an important socio-political transformation towards more inclusive norms in the governance of society and its natural resources (Grundy and Breton, 1998; Prasad, 1999; Nibbering and Samyn, 2002; GOS, 2002a; Sreedharan, 2002; Dlamini, 2007).

Non-timber forest products are important to joint participatory forest management (JPFM) in the following ways: they are integral to the lifestyle of the forest dependent communities, as they fulfil basic requirements; NTFPs have an advantage over timber in terms of the time needed to achieve significant volumes of commercially valuable production (they become available even in the early stages of a rehabilitation of degraded forest areas). In countries like India about 50% of forest revenue and about 70% of forest export revenue comes from NTFPs (Campbell et al., 1997). NTFP management and development therefore have clear ecological, social and economic benefits. It is necessary to understand how rural communities think about participatory approaches to resource use and management.

The specific objective of the study was to embark on community consultations to gather information on the communities’ perception of preferred edible and medicinal NTFPs, their direct uses, the existing management strategies, and the threats to forest biodiversity and the domestication and commercialization initiatives. The study focused on Swaziland.

The specific research questions were:

- Are the local people conversant with existing policies and legislation that affect the NTFP sector? If not, what are the factors leading to this and what strategies can be developed to ensure optimisation of these policies for equitable and sustainable development of NTFPs at the local level?
- What are the potential threats to forest biodiversity that can lead to the loss of these NTFPs?
- Are there existing local level traditional management plans for the natural forests and woodlands and national policies and legislation that safeguard the sustainable extraction of preferred edible and medicinal NTFPs?
- Are the local people really aware of the opportunity cost of the surrounding natural forests and woodlands?
- Are the local people willing to put some effort into the conservation of natural forest and woodlands for the sustainable supply of timber and NTFPs?
- What domestication and commercialization initiatives are in place for preferred edible and medicinal NTFPs?

The Hypothesis to be tested was:

There are no existing traditional forest management plans that can complement the National Policies.

METHODS
Selection of the study sites
The study sites were selected according to two key criteria:

1. They had to cover a broad spectrum of sites, to allow calculation of variance. This was ensured by covering the four ecological zones (within the six physiographic zones) of the country (Godoy et al., 1993; FAO, 2001; Dlamini, 2007; Dlamini and Geldenhuys, 2011b), see Figure 1 and Box 1. This makes it possible to use data for comparison and generalization and the full range of Swaziland’s major forest types, with their associated variability in climatic and socio-economic conditions (modified from Hassan et al., 2002);

2. The selected villages had to be part of communities that live adjacent to natural forests and woodlands and harvest, extract or collect and utilize NTFPs from the neighbouring natural forests and woodlands (Appasamy, 1993; Godoy and Bawa, 1993; Hall and Bawa, 1993; Hedge et al., 1996; Shackleton, 1996; Campbell et al., 1997; Crafter et al., 1997; Qureshi and Kumar, 1998; Shackleton and Shackleton, 2000; Shackleton et al., 2002; Dovie, 2003b; Dlamini, 2007; Dlamini and Geldenhuys, 2011b). Only rural communities/villages were included in the study.
due to the low dependence of urban populations on direct harvesting of NTFPs from natural forests and woodlands (Hassan et al., 2002).

Figure 1: A map of the six physiographic zones of Swaziland (showing Grand Valley (Middleveld), Hhelehhele North (Highveld), Shewula (Lubombo) and Siphofaneni (Lowveld).

Box 1: Brief description of the four ecological zones of Swaziland.

<table>
<thead>
<tr>
<th>Ecological zone and characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highveld:</td>
</tr>
<tr>
<td>The Swaziland Highveld (altitude: 900-1400m) is the upper part of an overall escarpment, comprising complex steep slopes between low and high levels, dissected plateaux, plateau remnants, and associated hills, valleys and basins. Mean annual rainfall is 850-1400 mm. Characterized by Short grassland with evergreen forest patches.</td>
</tr>
<tr>
<td>Middleveld:</td>
</tr>
<tr>
<td>The Upper Middleveld (altitude: 600-800m) consists of strongly eroded plateau remnants and hills at intermediate level of the overall escarpment. It also has structurally defined basins in</td>
</tr>
</tbody>
</table>
relatively protected positions, which are only weakly eroded. The Lower Middleveld (altitude: 400-600m) is a piedmont zone of the escarpment, with generally strongly eroded foot slopes. The slopes are mostly moderate and the zone classifies at the first level as a plain. Mean annual rainfall is 650-1000 mm. Dominated by Tall grassland with scattered trees and shrubs and Broad-leaved savanna.

Lowveld:
The Lowveld plain comprises sedimentary and volcanic Karroo beds as opposed to the igneous and metamorphic rocks of the Highveld and Middleveld. The Lowveld is subdivided into the higher Western Lowveld (altitude: 250-400m) on sandstone or claystone and the lower Eastern Lowveld (altitude: 200-400m) on basalt. Mean annual rainfall is 550-725 mm. There is a combination of Mixed savanna and Acacia savanna.

Lubombo:
The Lubombo Range (altitude: 250-600m) is a cuesta with a steep escarpment bordering the Eastern Lowveld and a gradual dip slope of about 5% descending east. As a major landform the Lubombo qualifies as a plateau. Mean annual rainfall is 700-825 mm. Usually has Hillside bush and plateau savanna.

Source: Dlamini (2007).

Community Profiles
The communities studied comprised mainly illiterate representatives, who came from relatively poor rural households. Most of the households practise livestock and crop farming at the subsistence level, and harvest NTFPs. Most of the community representatives were old and unemployed people. From each area 20 men and 20 women were included in the survey.

Sampling procedure
Four communities were studied and only two villages were selected under each. The sampling procedure was guided by the following:

1. The District Forestry Officer in each study area, in consultation with the District Agricultural Extension Officers, was requested to select only two villages appropriate for this study in accordance with selection criterion 2;

2. A total of 40 community representatives, in each study area, were shortlisted from 40 households to participate in the community consultation meetings by the District Forestry Officer in close cooperation with the District Agricultural Extension Officers. The criteria used in choosing community representatives, amongst other factors, included their track record in attending other community development meetings and active participation in rural development programmes, gender (50% men and 50% women), age, and harvesting of NTFPs. In addition, at least two community leaders were invited as observers.

Data collection
Community consultations were held in the following centres: Shewula Mountain Camp Conference Centre (Shewula-Lubombo); Siphofaneni RDA (Siphofaneni-Lowveld); Church of the Nazarene (KaKhoulwane-Middleveld); and Hhelehhele North Umphakatsi (Hhelehhele North-Highveld). A total of 4 meetings per study site were conducted. There were three programmes (group work, individual responses and discussion of National Forest Policy) undertaken in each study area and a compilation of questions raised in presented in Box 2.

Data analysis
Group Discussions
The issues and comments raised by the group of community representatives for each question asked were compiled for each study area.

Individual Perceptions
The data collected on all the responses was compiled, sorted and coded, stored in Excel and analysed. The data was of binomial type and the incidence of people (denoted as percentage) was subjected to analysis of variance (4-factor factorial experiment in a one-way classification design), using SAS version 8.2 (SAS, 1999). The statistical model used, was:

\[Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \alpha \beta_{ij} + \alpha \gamma_{ik} + \alpha \delta_{il} + \beta \gamma_{jk} + \beta \delta_{jl} + \gamma \delta_{kl} + \varepsilon_{ijkl} \]

Where:
- \(\mu \) = population mean
- \(\alpha_i \) = product effect (site or species or community)
- \(\beta_j \) = site effect

\[Y_{ijkl} \]
\[\gamma_k = \text{species}\]
\[\delta_l = \text{gender}\]
\[\alpha\beta_{ij} = \text{product} \times \text{Site effect}\]
\[\alpha\gamma_{ik} = \text{product} \times \text{species}\]
\[\alpha\delta_{il} = \text{product} \times \text{gender}\]
\[\beta\gamma_{kl} = \text{site} \times \text{species}\]
\[\beta\delta_{jl} = \text{site} \times \text{gender}\]
\[\gamma\delta_{kl} = \text{species} \times \text{gender}\]
\[\varepsilon_{ij} = \text{error}\]

The higher order interaction were used as part of error \((\varepsilon_{ijkln})\)

The Shapiro-Wilk test was performed to test for non-normality (Shapiro and Wilk, 1965). In some cases where evidence of non-normality was found, it was due to high kurtosis and not skewness. A magnitude of similar values was responsible for the kurtosis. According to Glass et al. (1972) the analysis is valid. Student’s t-Least Significant Difference was calculated at the 5% confidence level to compare main factor means (e.g. products, sites, gender, species).

Review of current National Forest Policy

The issues raised by communities on local-level sustainable forest management, after the discussion of the National Forest Policy (NFP) were summarized for the entire country, and the full range of original submissions from individual study sites was also kept for reference on specific issues of concern by site through the four ecological zones of Swaziland.

Box 2: Questions raised to participants

Group Discussions

The following questions were posed to the group for submission of group perceptions on the issues raised:

- (a) What are the major landuses in the area?
- (b) Are there national policies and laws governing the adjacent natural forests and woodlands?
- (c) What are the current traditional species utilization and management programmes?
- (d) What are the threats to forest biodiversity?
- (e) Are the local people willing to participate in natural forest conservation?
- (f) Are the local people aware of the opportunity cost of the adjacent natural forest and woodland resources?
- (g) Is there a domestication and commercialisation potential for NTFPs in the area?
- (h) Which natural forests and woodlands can be considered or nominated for research and development?

Individual Perceptions

The following set of questions was formulated and posed to the community representatives on an individual basis, in each study site:

- (a) What are the most preferred edible NTFPs?
- (b) What are the most preferred medicinal NTFPs?
- (c) Which indigenous edible and medicinal NTFPs are threatened?
- (d) Give a list of the top priority desired edible and medicinal NTFPs that are worthy of immediate domestication and commercialisation (Refer to Appendix 11 for a specimen of the data collection form).

Review of the current National Forest Policy

Step one:

The SiSwati version of the NFP was read and discussed during a community consultation meeting in all the study sites.

Step two:

The policy issues and statements on Natural Forests and Woodlands were given special consideration and the communities were to develop guidelines for the management of their natural forests and woodlands in relation to those in the new NFP.

Step three:

Summaries of their views were fully captured and recorded. The community consultations were conducted between July 2003 and October 2003. This was during the winter and spring seasons when farmers were not busy.
RESULTS

Group Discussions

Four full-day meetings were conducted per study site, as planned. It was remarkable to note that the target participants and observers were in attendance with a 100% turn-up in all the four study sites. However, it was also observed that due to unforeseen circumstances and social commitments the composition of the participants was changing in every subsequent meeting, but the total number and gender still remained at 20 men and 20 women as earlier planned.

Threats to forest biodiversity

The communities in the various study areas reported a number of threats to forest biodiversity. Responses per study area are presented in Table 1. Most threats were reported only in one of the four study areas. The responses depict the number of community representatives that raised and supported specific issues (i.e. threats). For example 40/40 community respondents raised Alien Invasive Species as a threat to forest biodiversity at Hhelehhele North, Grand Valley and Shewula). The most common threats were alien invasive plants and drought.

Table 1: The reported threats to forest diversity from Community Consultations in the four ecological zones of Swaziland

<table>
<thead>
<tr>
<th>THREATS</th>
<th>% RESPONSES (OUT OF A TOTAL OF 40 REPRESENTATIVES PER SESSION) IN STUDY SITES OVER THE FOUR ECOLOGICAL ZONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hhelehhele North</td>
</tr>
<tr>
<td>Alien Invasive Plants</td>
<td>100</td>
</tr>
<tr>
<td>Biopiracy</td>
<td>22.5</td>
</tr>
<tr>
<td>Desertification</td>
<td>0</td>
</tr>
<tr>
<td>Drought</td>
<td>100</td>
</tr>
<tr>
<td>Encroaching species</td>
<td>0</td>
</tr>
<tr>
<td>Farm structures</td>
<td>0</td>
</tr>
<tr>
<td>Fire arms</td>
<td>0</td>
</tr>
<tr>
<td>Forest Fires</td>
<td>72.5</td>
</tr>
<tr>
<td>Fuel wood</td>
<td>0</td>
</tr>
<tr>
<td>Ignorance of laws</td>
<td>0</td>
</tr>
<tr>
<td>Overstocking</td>
<td>0</td>
</tr>
<tr>
<td>Population explosion</td>
<td>0</td>
</tr>
<tr>
<td>Sugarcane farming</td>
<td>0</td>
</tr>
<tr>
<td>Traditional healers</td>
<td>37.5</td>
</tr>
<tr>
<td>Warthogs</td>
<td>12.5</td>
</tr>
<tr>
<td>Wood crafts</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Encroaching species in this regard refers to Dichrostachys cinera

Traditional species management systems

Traditional authorities (village leadership structures) are responsible for the local-level management of natural forests and woodlands, which entails the sustainable harvesting of forest foods and forest medicines and other timber and NTFPs. Over the years there was a steady decline in the supply of NTFPs from natural forests and this is attributed to the issues highlighted in Box 3.

National Policies and legislation

The communities are not versed with any functional and nominal national and international policies and legislation that govern the extraction of natural forest products in the adjacent natural forests and woodlands. About 47.5%, 37%, 100% and 100% of the responses were that there are no policies and legislation governing the use of NTFPs, in Hhelehhele North, Grand Valley, Siphofaneni and Shewula, respectively.

This is regardless of the series of national policies and legislation that government has developed and the international conventions that government has signed and ratified. In the Grand Valley area 22.5% of the responses mentioned that misunderstanding and strict enforcement of the Grass Fire Act of 1955 has lead to dense natural woodlands and displacement of grasses, which is a sign of a disturbed ecosystem. However, all the communities studied wished there were effective policies and laws to govern the sustainable use of natural forest and woodlands to prevent the gradual loss of forest bio-
diversity. They expressed 100% support to save the dwindling natural woodlands for the remaining species of timber and NTFPs.

Box 3: Existence of Traditional Species Management in the various communities

- **Hhelehhele North-Highveld**: The Traditional Authorities are responsible but communities do not cooperate.
- **Grand Valley/Kakholwane-Middleveld**: There were stringent policies and laws against the felling/cutting of edible trees, felling of trees for fuel wood, woodcrafts, and medicinal purposes. These are now outdated. They are not documented and the youth challenge them and violate them.
- **Siphoфанени-Lowveld**: None at present, heard about the Forest Act of 1910 and traditional authorities used to enforce, but now it is outdated and there is nothing protecting forests
- **Shewula-Lubombo**: Traditional policies and laws are in place except that the youth violate them, but penalties are imposed on offences of misuse of forests.

Opportunity cost of the forest

Some local people are aware of the economic value of the adjacent natural forests and woodlands. Hhelehhele North, Siphofaneni and Shewula had 72%, 57.5% and 92.5% responses admitting that people are aware of the opportunity cost of the forest, while 35% responses in Grand Valley suggested that people needed to be educated about the concept.

Domestication and commercialisation of indigenous NTFPs

Only Shewula community has established a pilot nursery for the domestication and propagation of indigenous plants of socio-economic importance. The Hhelehhele North communities have established a community woodlot for valuable indigenous hardwoods that include Breonadia salicina, Brachylaena ilicifolia, and other unidentified species. In addition the communities are also in the process of establishing orchards for indigenous edible species. All these initiatives are under the Chief’s management (a chief being the highest person in the village leadership).

The other communities in the Grand Valley/KaKholwane and Siphofaneni study sites have priority species (*Syzygium cordatum* and *Berchemia zeyheri*) for domestication and mass propagation but do not have any formal domestication programmes yet. It is encouraging that they are willing to embark on such programmes soon. All the communities are willing to embark on massive domestication and commercialisation programmes. Hhelehhele North, Grand valley, Siphofaneni and Shewula had 62.5%, 77.5%, 47.5% and 67.5 % positive responses for implementing NTFP domestication initiatives.

Resource use

The Siphofaneni site in the lowveld has the highest number of harvested edible and medicinal products (mammals, fruits and berries, vegetables, mushrooms, bee honey, insects, caterpillars, wax and medicines), followed by the Shewula site (fruits and berries, vegetables, mushrooms, bee honey, insects, caterpillars and medicines) and the Grand Valley/KaKholwane site (fruits and berries, vegetables, mushrooms, bee honey, wax, caterpillars and medicines). The Hhelehhele North site is last with just fruits and berries, vegetables and medicines (for more details refer to Table 2).

Table 2: Reported number of species in the various study sites - Community Consultations

<table>
<thead>
<tr>
<th>Product group</th>
<th>Grand Valley</th>
<th>Hhelehhele North</th>
<th>Shewula</th>
<th>Siphofaneni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Edible plant species</td>
<td>38</td>
<td>16</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Preferred Edible animal species</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Preferred Medicinal plant species</td>
<td>20</td>
<td>20</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Threatened edible animal species</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Threatened medicinal plant species</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Threatened edible plant species</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Top priority species</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Individual Perceptions
The communities from the various study sites were further requested to develop lists of species under seven product groups. The product groups were as follows: preferred edible plants species, preferred edible animal species, preferred medicinal plants, threatened edible animal species, threatened medicinal plant species (plants facing extinction), threatened edible plant species and top priority species (most desirable or preferred) for immediate domestication and commercialisation. The Grand Valley site listed the highest number of edible plant species and the Siphofaneni the highest number of edible animals, while the Hhelehhele North and Grand Valley sites reported the highest number of medicinal plants. The various study sites have between 5 and 15 top priority species targeted for domestication and commercialisation.

Analysis of responses on preferred NTFPs

The results were analysed for Product (7 groups), Site (4), Species (129) and Gender (2). The product groups were edible animals, edible plants, medicinal plants, threatened edible animals, threatened edible plants, threatened medicinal plants and top priority species. A breakdown of the number of species, mean number and standard deviation of responses for product groups is presented in Table 3 and for sites presented in Table 4. The detailed Analysis of Variance (ANOVA) across sites is shown in Table 5, and for individual sites in Table 6. Graphical representation of the percentage responses of community representatives for the various product groups within each of the study areas is shown in Figures 2, 3, 4 and 5. Please note the dependent variable here in this analysis is % people NOT % species and that top priority species is a product class as per the people’s perceptions and not statistically validated.

Table 3: The variation in the average number of responses and number of NTFP species reported during Community Consultations between product categories

<table>
<thead>
<tr>
<th>Level of product</th>
<th>Number of NTFPs species reported (including repetitions)</th>
<th>Mean number of responses out of a possible 40</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicinal plants</td>
<td>124</td>
<td>28.1 a</td>
<td>1.3</td>
</tr>
<tr>
<td>Top priority species</td>
<td>74</td>
<td>27.4 a</td>
<td>1.2</td>
</tr>
<tr>
<td>Threatened edible animals</td>
<td>8</td>
<td>26.5 a</td>
<td>1.8</td>
</tr>
<tr>
<td>Threatened edible plants</td>
<td>34</td>
<td>25.6 ab</td>
<td>0.7</td>
</tr>
<tr>
<td>Edible plants</td>
<td>180</td>
<td>25.1 ab</td>
<td>1.9</td>
</tr>
<tr>
<td>Threatened medicinal plants</td>
<td>34</td>
<td>21.6 b</td>
<td>1.4</td>
</tr>
<tr>
<td>Edible animals</td>
<td>32</td>
<td>13.4 c</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Note: Means with same letter indicates no differences and different letters indicate differences

Table 4: The variation in the number of responses and number of NTFP species reported during Community Consultations between the various Study Sites

<table>
<thead>
<tr>
<th>Level of site</th>
<th>Number of NTFP species reported (including repetitions)</th>
<th>Mean number of responses out of a possible 40</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siphofaneni</td>
<td>128</td>
<td>27.7 a</td>
<td>1.1</td>
</tr>
<tr>
<td>Grand Valley</td>
<td>152</td>
<td>26.2 a</td>
<td>1.0</td>
</tr>
<tr>
<td>Shewula</td>
<td>108</td>
<td>23.4 b</td>
<td>1.2</td>
</tr>
<tr>
<td>Hhelehhele North</td>
<td>98</td>
<td>22.6 b</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Note: Means with same letter indicates no differences and different letters indicate differences

Table 5: Analysis of variance for community consultations showing the statistical differences (depicted by the p-values) in responses between products, sites, gender, species, and the various interactions: Across Study Sites

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Degrees of freedom</th>
<th>Mean square</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>6</td>
<td>1058.6</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Site</td>
<td>3</td>
<td>1004.5</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Product*site</td>
<td>13</td>
<td>936.5</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Species</td>
<td>127</td>
<td>436.8</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Site*species</td>
<td>61</td>
<td>147.2</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Product*species</td>
<td>32</td>
<td>249.9</td>
<td><0.0001**</td>
</tr>
</tbody>
</table>
The ANOVA of overall community consultations across sites shows highly significant differences between products \((p<0.0001) \), between Sites \((p<0.0001) \), in the interaction between products and sites \((p<0.0001) \), between species reported \((p<0.001) \), in interaction between sites and species reported \((p<0.008) \), in the interaction between site and gender \((p<0.0001) \), in the interaction between species and gender \((p<0.0001) \), and in the interaction between products and gender \((p<0.0001) \). There were no significant differences between gender \((p<0.813) \).

The Grand valley site-Middleveld

This site reported 66 of the 129 total species. No threatened edible animals were reported. Gender response was balanced between men and women representatives. In only edible plants were responses by women higher than by men.

The Hhelehele North site-Highveld

This site reported 41 of the 129 total species. No threatened edible animals and edible plants were reported. Gender response was balanced in some cases.

Table 6: Analysis of variance for community consultations showing the statistical differences (depicted by the p-values) in responses between products, sites, gender, species, and the various interactions: In Individual Study Sites

<table>
<thead>
<tr>
<th>GRAND VALLEY SITE (MIDDLEVELD)</th>
<th>Sources of variation</th>
<th>Degrees of freedom</th>
<th>Mean Square</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>5</td>
<td>1125.5</td>
<td>0.0001**</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>64</td>
<td>360.9</td>
<td>0.0016**</td>
<td></td>
</tr>
<tr>
<td>Product*Species</td>
<td>6</td>
<td>184.7</td>
<td>0.0163*</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>243.7</td>
<td>0.0231*</td>
<td></td>
</tr>
<tr>
<td>Product*Gender</td>
<td>5</td>
<td>632.7</td>
<td>0.0007**</td>
<td></td>
</tr>
<tr>
<td>Species*Gender</td>
<td>64</td>
<td>114.6</td>
<td>0.0352*</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>26.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>151</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HHELEHELE NORTH SITE (HIGHVELD)</th>
<th>Sources of variation</th>
<th>Degrees of freedom</th>
<th>Mean Square</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>4</td>
<td>753.3</td>
<td>0.0217*</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>40</td>
<td>426.8</td>
<td>0.0473*</td>
<td></td>
</tr>
<tr>
<td>Product*Species</td>
<td>4</td>
<td>22.0</td>
<td>0.8616ns</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>1653.1</td>
<td>0.0088**</td>
<td></td>
</tr>
<tr>
<td>Product*Gender</td>
<td>4</td>
<td>357.6</td>
<td>0.0754ns</td>
<td></td>
</tr>
<tr>
<td>Species*Gender</td>
<td>40</td>
<td>144.8</td>
<td>0.2638ns</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>4</td>
<td>72.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHEWULA SITE (LUBOMBO PLATEAU)</th>
<th>Sources of variation</th>
<th>Degrees of freedom</th>
<th>Mean Square</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>5</td>
<td>427.1</td>
<td>0.0058**</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>36</td>
<td>370.3</td>
<td>0.0022**</td>
<td></td>
</tr>
<tr>
<td>Product*Species</td>
<td>12</td>
<td>288.8</td>
<td>0.0121*</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>244.5</td>
<td>0.0920ns</td>
<td></td>
</tr>
<tr>
<td>Product*Gender</td>
<td>5</td>
<td>258.4</td>
<td>0.0336*</td>
<td></td>
</tr>
<tr>
<td>Species*Gender</td>
<td>36</td>
<td>191.5</td>
<td>0.0379*</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>72.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIPHOFANENI SITE (LOWVELD)</th>
<th>Sources of variation</th>
<th>Degrees of freedom</th>
<th>Mean Square</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>5</td>
<td>427.1</td>
<td>0.0058**</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>36</td>
<td>370.3</td>
<td>0.0022**</td>
<td></td>
</tr>
<tr>
<td>Product*Species</td>
<td>12</td>
<td>288.8</td>
<td>0.0121*</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>244.5</td>
<td>0.0920ns</td>
<td></td>
</tr>
<tr>
<td>Product*Gender</td>
<td>5</td>
<td>258.4</td>
<td>0.0336*</td>
<td></td>
</tr>
<tr>
<td>Species*Gender</td>
<td>36</td>
<td>191.5</td>
<td>0.0379*</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>72.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sources of variation | Degrees of freedom | Mean Square | P-values
--- | --- | --- | ---
Product | 5 | 1758.1 | <0.0001**
Species | 48 | 228.3 | 0.0037**
Product*Species | 10 | 333.5 | 0.0016**
Gender | 1 | 1411.1 | 0.0002**
Product*Gender | 5 | 812.7 | <0.0001**
Species*Gender | 48 | 163.2 | 0.0137*
Error | 10 | 43.0 | 43.0
Corrected Total | 127 | | |

P<0.05=Statistically significant; P>0.05= Not Statistically significant, at 95% Confidence Interval; **= Highly significant; *= Significant; ns= Non-significant.

The Shewula site-Lubombo Plateau
This site reported 38 of the 129 total species. No threatened edible animals were reported. Gender response was balanced in certain cases.

The Siphofaneni site-Lowveld
This site reported 51 of the 129 species. No threatened medicinal plants were reported. Gender response was balanced in some cases.

Figure 2: Graphical representation of the percentage responses of community representatives for the various product groups at Grand Valley area.

Figure 3: Graphical representation of the percentage responses of community representatives for the various product groups at Hhelehhele area.
Overall commonly reported preferred edible NTFPs include the following: *Sclerocarya birrea*, *Berchemia zeyheri*, *Strychnos madagascariensis*, *Strychnos spinosa*, *Englerophytum natalense*, *Aloe maculata*, *Syzygium cordatum*, *Vangueria infausta*, *Psidium guajava*, *Psalliota campestris*, edible caterpillars and bee honey. The commonly preferred medicinal NTFPs included the following: *Sclerocarya birrea*, *Psidium guajava*, *Berchemia zeyheri*, *Aloe maculata*, *Rotheca hirsuta*, *Pittosporum viridiflorum*, *Drimia delagoensis*, *Peltopsorum africanum*, *Aloe spp.*, *Ekerbegia capensis*, and *Hypoxis spp.* Several species are used for both food and medicines, and categorized as multi-purpose species. Some of the preferred species are alien invader species, such as *Psidium guajava*. This shows that some invasive alien species contribute positively to household health needs.

Review of current National Forest Policy

Concerns with regard to the current status of forest and woodland resources in Swaziland revolve around sustainable management issues. Participants in the various sites made submissions of twenty one (21) issues that need urgent consideration in order to underpin the national efforts and programmes to combat degradation of natural resources and the environment see Table 7.

Figure 4: Graphical representation of the percentage responses of community representatives for the various product groups at Shewula Nature Reserve.

Figure 5: Graphical representation of the percentage responses of community representatives for the various product groups at Siphofaneni area.
Table 7: Issues raised in Community Consultations

<table>
<thead>
<tr>
<th>MAJOR ISSUES</th>
<th>ASSOCIATED ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional issues</td>
<td>- Community-based Natural Resources Management Committees</td>
</tr>
<tr>
<td>Socio-cultural issues</td>
<td>- Modern Agro-forestry Systems
- Empowerment of Chiefs
- Incentives for Chiefs</td>
</tr>
<tr>
<td>Environmental and Ecological issues</td>
<td>- Youth Environmental Programmes
- Invasive Alien Plants Strategy
- Forest Fires
- Species Re-introduction and Replanting Programmes</td>
</tr>
<tr>
<td>Socio-economic issues</td>
<td>- Eco-tourism
- Alternative Forms of Livelihoods</td>
</tr>
</tbody>
</table>

DISCUSSION

The results of the study show that the major land uses in the four study sites are more inclined to traditional subsistence and pastoral farming, where there is communal grazing of livestock from various homesteads. The literacy levels of the participants were low, as most people, especially the old men and women, never went to school. All the community members who participated in the community consultation meetings were unemployed, and only earned a living through subsistence farming and harvesting of forest products from the adjacent forests and woodlands. These products include indigenous medicines, wild food resources, woodcarvings, and construction material. This is the part of the country where about 75% of the entire population reside (GOS, 1999; Dlamini, 2007). In similar studies, Dovie et al. (2001), Dovie (2003b), Shackleton (1996), Shackleton and Shackleton (2000, 2002, 2004, 2005) and Shackleton et al. (2000, 2002) reported that the majority of South Africans reside in the rural areas characterized by limited infrastructure and lack of employment opportunities. Many therefore, make extensive use of NTFPs as part of their daily livelihoods. Rapid population growth and increasing poverty of the population has caused tremendous pressure on natural forests and woodlands to meet its subsistence needs and generate income as stated by Nibbering and Samyn (2002), Dlamini (1997, 1998, 2007, 2010b).

The threats to forest biodiversity and recommendations mentioned are similar to those in the National Forest Policy, National Environmental Policy and the National Biodiversity Strategy and Action Plan. Threats to forest biodiversity in Swaziland include alien invasive species, encroachment, herbivory by livestock, uncontrolled fires, frequent drought and unsustainable exploitation of natural forest and woodlands. Land conversion to agriculture, infrastructure and uncontrolled resettlement are other threats to forest biodiversity (GOS, 1999, 2001a, 2002b; Dlamini, 2007). There is a strong need for development programmes to address these issues. Such programmes and projects should include the control of invasive species, the control over the use of certain endangered species, the control of forest fires and the reduction of overstocking and overgrazing. These programmes need to be developed in conjunction with the NBSAP. Also important is the Environmental Impact Assessment (EIA) and Natural Resources Accounting (NRA) to monitor the authenticity of land conversion and alleviate loss.
of forest biodiversity. The NRA will give the communities/resource managers a good picture of the opportunity cost of the adjacent natural forest and woodlands, while the EIA will give a good picture of the biodiversity status of the natural forests and woodlands. Similar observations were made by Godoy et al. (1993, 2000) based on 24 studies on NTFPs analysed at the Harvard Institute for International Development.

The status of domestication and commercialisation in the study sites shows that the country is behind the rest of the Southern Africa Development Community (SADC) member countries. Most of the neighbouring countries have embarked on massive domestication and commercialisation programmes and projects. Swaziland might benefit from the CPWild project (CP Wild, 2004; Dlamini, 2007), which is seeking to establish a commercialization and domestication initiative that focuses on South Africa, Namibia, Botswana, Zimbabwe, Malawi, Mozambique, Swaziland and Lesotho. Their main aim is to develop the use of natural forest and woodland resources for socio-economic benefit in the SADC region of Africa. The willingness of the communities to participate in the sustainable management and conservation of natural forests and woodlands is a positive step considering the contemporary Participatory Forest Management approach towards Sustainable Forest Management (SFM), where forest good and services are managed for present and future generations. This is seen in the 100% attendance and participation of community reps reported earlier.

Forests and woodlands play a significant role in supplying fuelwood for energy and about 70% of rural households in Swaziland rely on fuelwood, and this percentage is expected to remain high for some time (GOS, 2002a; Dlamini and Geldenhuys, 2009). Fuelwood consumption estimates are consistent but there are clear indications that local shortages prevail, especially in the Upper Middleveld and parts of the Lower Middleveld and Lowveld, particularly in dense settlements and arable areas (Lasschuin, 1994, 1995). Supplementary sources of fuelwood are the private and communal wattle forests, though not always on a sustainable basis. Issues of other sources of affordable energy need to be promoted and these are addressed by the draft National Energy Options Paper. Trade in fuelwood and charcoal from indigenous species has exacerbated the over-exploitation of these natural resources leading to forest degradation. According to Dlamini (2007) the new National Forest Policy outlines other sources of fuelwood and ways to increase supply and energy efficiency that include the following:

1. Increased and improved distribution systems of wood waste from commercial plantations;
2. More efficient use and management of wattle forests;
3. Enrichment planting of selected fast growing natural tree species in the degraded natural forests and woodlands;
4. Buffer-zone planting of suitable exotic species to protect natural forests and woodlands;
5. Establishment of multipurpose woodlots;
6. Increased individual tree growing and Agro-forestry;
7. Agricultural residues, industrial wood waste and baggase from the sugar industry;
8. Charcoal in specific locations, such as from Highveld wattle forests and bush encroachment on farms;
9. Increased energy efficiency through improved wood stoves; and
10. Eradication programmes of harmful alien invasive plant species.

The above options have different potentials and need further evaluation.

The communities from the various study sites reported several preferred species of edible and medicinal NTFPs, the threatened species under each product group, and the top priority with regard to immediate domestication and commercialisation. Studies in the Republic of South Africa done by Shackleton and Shackleton (1997, 2004, 2005) and Shackleton et al., (2002), and in Swaziland by Dlamini (2011a) and Dlamini and Geldenhuys (2009, 2011a,b) also highlighted several NTFP resources that are utilized by rural communities, i.e. fuelwood, construction wood, edible fruits, edible herbs, edible insects, medicinal plants, bush meat, bee honey, reeds for weaving and grass hand brushes. Most of the NTFP species reported in South Africa are also extensively utilized in Swaziland as well, according to the list of species reported in the community consultations.

The Grand Valley site reported a significantly higher number of edible species. This area falls within the mixed woodland zone, which is the richest in botanical diversity in the entire country (Hess et al., 1990; DANCED 1999; Dlamini, 2007). The findings of this study are in full agreement with the previous
national forest inventories. All the sites reported more than five top priority species that are candidates for domestication and commercialisation. This means local, national, regional and international initiatives and programmes towards domestication and commercialisation of indigenous NTFPs will be greatly appreciated and will receive full cooperation of the communities. There were differences in the information reported by men and women, and that confirms that both genders may not have the same practical experience with the surrounding natural forests and woodlands. Though, during the meetings women showed more interest and knowledge about edible species than medicinal species, and men were more inclined towards highly economic medicinal species. Only the Siphofaneni communities mentioned threatened species of edible animals, and these were: edible caterpillars, locusts and termites. The implications are that in the other study sites the species of edible products are either abundant or most likely extinct.

The final programme under the consultations was the review of the SiSwati translated version (SiSwati being the local language) of the new National Forest Policy. Simultaneously, the community participants were requested to share their indigenous knowledge and practical experience with the adjacent natural forests and woodlands. A sum total of 21 issues and recommendations were raised pertaining to local-level sustainable forest management in the four ecological zones of rural Swaziland. Some of the issues raised are addressed by the new Forest Policy. However, in all the study sites the community participants lacked knowledge of any national policies guiding and governing the use of natural forests and woodlands. This will have to be addressed to align the needs of the communities with the requirements of the Forest Policy.

There was very little variation in the issues between sites and as such most of the issues were similar, and these may be made into national issues surrounding the sustainable use and management of natural forests and woodlands for NTFPs. In addition the main issues raised in the community consultations are in line with issues addressed by the activities and objectives of the following national policies:

1. National Forest Policy
2. National Tourism Policy
4. National Land Policy
5. National Resettlement Policy

Collaboration between the institutions responsible for the implementation of the above national programmes is imperative for local-level sustainable forest management to be successful. The results of the study reflected a total lack of functional traditional species management and utilization systems in all the study sites. This change also affected the political institutions. Chiefs were demoted to powerless figures, as people were more enlightened about their rights. However, the new National Forest Policy has hopes to resuscitate the Chief’s powers in monitoring and regulating harvesting of natural forests and woodlands. Consequently, the hypothesis “There are no existing traditional forest management plans that can complement the National Policies” is accepted.

CONCLUSIONS AND RECOMMENDATIONS

Based on the findings of the study it can be concluded that there is heavy reliance of local communities on natural forests and woodlands for the harvesting of NTFPs. The absence of local level NTFP management systems and plans and the absence of national and international policies and legislation governing the sustainable use of NTFPs have lead to an increase in the number of NTFP species that are currently threatened and endangered due to over-exploitation and unsustainable use of NTFPs. The commercialisation of NTFPs has lead to the problem of non-resident extractors (traditional healers and wood cavers, as well as other groups) that has been highlighted to be a threat to forest biodiversity in most communities. The unprescribed and uncontrolled burning systems and heavy infestation by alien invasive species have lead to a rise in veld fires (i.e. wild fires) resulting in the decline in forest quality and vitality (manifested by disappearance of important NTFP species) in adjacent natural forests and woodlands.

The following actions are recommended:
Dlamini and Geldenhuys

1. Local and national governments, through their tenure reform systems, should formulate laws (legally enforceable rights) that will give resource users and communities the power to exclude and sanction other users, so that resources can be used sustainably;
2. Development of new and innovative up to date feasible forest management strategies is crucial, if the current forest degradation and land conversion is to be put to rest. Securing community rights to trees and other forest products is a recommended route to the greater participation of communities in natural resources management;
3. Local and national governments should develop strong but clear policies and legislation safeguarding the benefits flow. Rights to forests and forest resources should be linked to management responsibilities. Negotiated agreements should be clear, internalised with local resource user ownership;
4. Local and national governments and development organizations should develop and implement policies and legislation to provide secure access and benefits to the people whose livelihoods are dependent on or supplemented by NTFPs; and
5. Local and national governments and concerned development organizations should ensure that stakeholders, particularly collectors, growers and traders, are provided with incentives to sustainably manage NTFPs.

In addition to the above recommendations there is a need to adopt and implement the following steps of contemporary approaches to sustainable use and conservation of NTFPs (modified from Crafter et al., 1997; Geldenhuys, 2003):
(i) Building NTFP use into management plans;
(ii) Defining the role of governments and NGO's in community participation;
(iii) Addressing policy, legal and institutional issues (policy and legislation, property rights and land tenure systems);
(iv) Promoting education and training at all levels of society.

ACKNOWLEDGEMENTS
The authors would like to thank the following individuals and organizations:
Dr Isla Grundy, Professor G van Wyk, The University of Stellenbosch, The University of Swaziland, The Fort Cox College of Agriculture and Forestry, Tibuso TakaNgwane, all Communities involved in the research, Government Foresters in the Ministry of Agriculture and Cooperatives in Swaziland, subject matter specialists interviewed in the various Government Departments and Sections in Swaziland.

REFERENCES

