
IJERT Volume 5 [4] 2014 25 | P a g e © 2014 Society of Education, India

Application of Genetic Algorithm for Resource-Constrained
Scheduling

Mahdi Razi, Iman Razi

Industrial Engineering Department, Amirkabir University of Technology, Tehran, Iran
Industrial Engineering Department, Islamic Azad University, Firouz Kouh Branch, Ghom, Iran

Email: mahdirazi@chmail.ir

ABSTRACT

Goal of Scheduling problem is optimization of a function in deciding a set of activities that must be executed under
different constraints. There are two main types of constraints including are precedences between activities, and the
availability of finite resources.This research presents a genetic algorithm approach to resource-constrained scheduling
using adirect, time-based representation. The new representation encodes schedule information as a dual array of
relative delay timesand integer execution modes. This representation includes time-varying resourceavailabilities and
requirements. The genetic algorithm adapts todynamic factors such as changes to the project plan or disturbances in the
schedule execution.The genetic algorithm was applied to over 1000 small job shop and project scheduling problems(10-
300 activities, 3-10 resource types). According to result based on computationally expensive, the algorithm performed
fairly well on a wide variety of problems. In addition, the algorithm found solutions within 2% of published best in 60%
of the project scheduling problems.The GA performed better than deterministic, bounded enumerative search methods
for 10% of the 538 problems tested on project scheduling problems with multiple execution modes.
Keywords: scheduling, optimization, operations research, procedural search, classification

Received 02.09.2014 Revised 12.11. 2014 Accepted 18.11.2014

How to cite this article: Mahdi Razi, Iman Razi. Application of Genetic Algorithm for Resource-Constrained
Scheduling.Inter. J. Edu. Res. Technol. 5[4] 2014; 25-34.DOI: 10.15515/ijert.0976-4089.5.4.2534

INTRODUCTION
Scheduling consists in deciding when a set of activities must be executed under different constraints, in
order to optimize a given objective. The two main types of constraints are precedences between activities,
and the availability of finite resources.
Common objectives are to minimize the total duration or to minimize the weighted sum of the tardiness
of activities with respect to given due-dates (Blum and Sampels, 2004). Scheduling problems are very
varied, both in application domains and in featured constraints. Some typical applications are
manufacture scheduling, construction scheduling, code optimization in compilers, and pharmaceutical
project planning (Cambazard and Jussien, 2006).
Scheduling problems are optimization problems. Optimization problems may be defined in a constraint-
oriented way. In this setting, a problem is defined by decision variables, constraints on the decision
variables and an objective function defined on the decision variables. The decision variables are the
unknowns of the problem that must be fixed (Birattari, 2009).
This document describes a genetic algorithm for finding optimal solutions to dynamic
resourceconstrainedscheduling problems. Rather than requiring a different formulation for
eachscheduling problem variation, a single algorithm provides promising performance on manydifferent
instances of the general problem. Whereas traditional scheduling methods use search or scheduling rules
(heuristics) specific to the project model or constraint formulation, thismethod uses a direct
representation of schedules and a search algorithm that operates with noknowledge of the problem
space. The representation enforces precedence constraints, and theobjective function measures both
resource constraint violations and overall performance.
In its most general form, the resource-constrained scheduling problem asks the following:
Given a set of activities, a set of resources, and a measurement of performance, what is the bestway to
assign the resources to the activities such that the performance is maximized? Thegeneral problem

International Journal of Educational Research and Technology
P-ISSN 0976-4089; E-ISSN 2277-1557
IJERT: Volume 5 [4] December 2014: 25-34

© All Rights Reserved Society of Education, India
ISO 9001: 2008 Certified Organization
Website: www.soeagra.com/ijert.html Original Article

IJERT Volume 5[4] 2014 26 | P a g e © 2014 Society of Education, India

encapsulates many variations such as the job-shop and flowshopproblems,production scheduling, and the
resource-constrained project scheduling problem.
Scheduling requires the integration of many different kinds of data. Constructing a schedule requires
models of processes, definition of relationships between tasksand resources, definition of objectives and
performance measures, and the underlying datastructures and algorithms that tie them all together.
Schedules assign resources to tasks (or tasksto resources) at specific times. Tasks (activities) may be
anything from machining operations todevelopment of software modules. Resources include people,
machines, and raw materials (Christopher Beck and Philippe Refalo, 2003).
Typical objectives include minimizing the duration of the project, maximizing the net presentvalue of the
project, or minimizing the number of products that are delivered late.Planning and scheduling are
distinctly different activities. The plan defines what must be doneand restrictions on how to do it, the
schedule specifies both how and when it will be done. Theplan refers to the estimates of time and
resource for each activity, as well as the precedencerelationships between activities and other
constraints. The schedule refers to the temporalassignments of tasks and activities required for actual
execution of the plan. In addition, anyproject includes a set of objectives used to measure the
performance of the schedule and/or thefeasibility of the plan. The objectives determine the overall
performance of the plan andschedule.
Scheduling problems are dynamic and are based on incomplete data. No schedule is static untilthe project
is completed, and most plans change almost as soon as they are announced.
Depending on the duration of the project, the same may also be true for the objectives. Thedynamics may
be due to poor estimates, incomplete data, or unanticipated disturbances. As aresult, finding an optimal
schedule is often confounded not only by meeting existing constraintsbut also adapting to additional
constraints and changes to the problem structure.
Genetic algorithms are a stochastic search method introduced in the 1970s in the United Statesby John
Holland [Holland 76] and in Germany by Ingo Rechenberg. Based onsimplifications of natural
evolutionary processes, genetic algorithms operate on a population ofsolutions rather than a single
solution and employ heuristics such as selection, crossover, andmutation to evolve better solutions.

MATERIAL AND METHODS
This section describes the solution method in five parts: (1) the problem model in the form ofassumptions
about tasks and resources with their associated constraints, (2) the search method,(3) the schedule
representation, (4) the genetic operators specific to the representation, and (5) the implementation of
objectives and constraints. The problem model determines the variationsof problems that can be solved,
the problem representation determines the bounds of the search space, the genetic operators determine
how the space can be traversed, and the objectives and constraints determine the shape of the search
space.
The assumptions made when modeling a problem determine the variations of that problem thatthe model
will support. The next three sections list assumptions about tasks, resources, andobjectives. The
assumptions in the first two sections typically end up being constraints. Thethird section highlights some
of the more common objectives that may be defined. Satisfactionof the constraints determines the
feasibility of a solution, satisfaction of the objectives determines the optimality of a solution.
Assumptions About Objectives
Any objective measure can be used as long as it can be determined from a complete schedule.Examples of
objectives include minimization of makespan, minimization of mean tardiness ofpart delivery times,
maximization of net present value, and minimization of work-in-progress.Objectives may include more
than one part. For example, minimization of the makespan maybe the primary objective, but only if it
does not drive the cost above a certain threshold (Nowicki and Smutnicki, 2005).
Search Method
Genetic algorithms are a stochastic heuristic search method whose mechanisms are based
uponsimplifications of evolutionary processes observed in Nature. Since they operate on more thanone
solution at once, genetic algorithms are typically good at both the exploration and exploitationof the
search space. Goldberg [Goldberg 89] provided a comprehensive description of the basicprinciples at
work in genetic algorithms, and Michalewicz described many oftheimplementation details for using
genetic algorithms with various data types.
Most genetic algorithms operate on a population of solutions rather than a single solution. Thegenetic
search begins by initializing a population of individuals. Individual solutions, orgenomes, are selected
from the population, then mate to form new solutions. The mating process,typically implemented by
combining, or crossing over, genetic material from two parents to formthe genetic material for one or two

Razi and Razi

IJERT Volume 5[4] 2014 27 | P a g e © 2014 Society of Education, India

new solutions, confers the data from one generation ofsolutions to the next. Random mutation is applied
periodically to promote diversity. If the newsolutions are better than those in the population, the
individuals in the population are replacedby the new solutions. This process is illustrated in Figure 1.

Figure 1 Generic genetic algorithmflowchart. Many variations are possible,from various selection

algorithms to awide variety of representation-specificmating methods. Note that there is noobvious
criterion for terminating thealgorithm. Number-of-generations orgoodness-of-solution are typically

used

In traditional schedule optimization methods, the search algorithm is tightly coupled to theschedule
generator. These methods operate in the problem space; they require informationabout the schedule in
order to search for better schedules. Genetic algorithms operate in therepresentation space. They care
only about the structure of a solution, not about what thatstructure represents. The performance of each
solution is the only information the geneticalgorithm needs to guide its search. For example, a typical
heuristic scheduler requiresinformation about the resources and constraints in order to decide which
task should bescheduled next in order to build the schedule. The genetic algorithm, on the other hand,
onlyneeds to know how a schedule is and how to combine two schedules to form anotherschedule.Having
said that, many hybrid genetic algorithms exist which combine hill-climbing, repair,and other techniques
which link the search to a specific problem space.
Proper choice of representation and tailoring of genetic operators is critical to the performance ofa
genetic algorithm. Although the genetic algorithm actually controls selection and mating,
therepresentation and genetic operators determine how these actions will take place. Many
geneticalgorithms appear to be more robust than they actually are only because they are applied
torelatively easy problems. When applied to problems whose search space is very large andwhere the
ratio of the number of feasible solutions to the number of infeasible solutions is low,care must be taken to
properly define the representation, operators, and objective function,otherwise the genetic algorithm will
perform no better than a random search.
Some genetic algorithms introduce another operator to measure similarity between solutions inorder to
maintain clusters of similar solutions. By maintaining diversity in the population, thealgorithms have a
better chance of exploring the search space and avoid a common problem ofgenetic algorithms,
premature convergence. After a population has evolved, all of the individualstypically end up with the
same genetic composition; the individuals have converged to the samestructure. If the optimum has not
been found, then the convergence is, by definition,premature. In most cases, further improvement is
unlikely once the population has converged.
The similarity measure is often referred to as a distance function, and these genetic algorithmsare
referred to as speciatingorniching genetic algorithms. The similarity measure may be basedupon the data
in the genome (genotype-based similarity), it may be based upon the genomeafter it has been

Razi and Razi

IJERT Volume 5[4] 2014 28 | P a g e © 2014 Society of Education, India

transformed into the problem space (phenotype-based similarity), or it mayintegrate some combination
of these.
The steady-state genetic algorithm uses overlapping populations. In each generation, a portionof the
population is replaced by the newly generated individuals. This process is illustrated inFigure 2. At one
extreme, only one or two individuals may be replaced each generation (closeto 100% overlap). At the
other extreme, the steady-state algorithm becomes a simple geneticalgorithm when the entire population
is replaced (0% overlap).

Figure 2TheÒsteady-stateÓ genetic algorithm. This algorithm uses overlappingpopulations; only a
portion of the population is replaced each generation. Theamount of overlap (percentage of
population that is replaced) may be specifiedwhen tuning the genetic algorithm.

The struggle genetic algorithm is similar to the steady-state genetic algorithm. However, ratherthan
replacing the worst individual, a new individual replaces the individual most similar to it,but only if the
new individual has a score better than that of the one to which it is most similar.This requires the
definition of a measure of similarity (often referred to as a distance function).The similarity measure
indicates how different two individuals are, either in terms of theiractual structure (the genotype) or of
their characteristics in the problem-space (the phenotype).
The struggle genetic algorithm was developed by Gr.ninger in order to adaptively maintaindiversity
among solutions. As noted previously, if allowed to evolve longenough, both the simple and the steady-
state algorithms converge to a single solution;eventually the population consists of many copies of the
same individual. Once the populationconverges in this manner, mutation is the only source of additional
change. Conversely, apopulation evolving with a struggle algorithm maintains different solutions (as
defined by thesimilarity measure) long after a simple or steady-state algorithm would have
converged.Unlike other niching methods such as sharing or crowding (Brucker, 2004), the struggle
algorithm requires no niching radius or otherparameters to tune the speciation performance.
Genetic Representation
Although much of the early genetic algorithm literature in the United States has focused on
bitrepresentations (i.e. solutions were encoded as a series of 1s and 0s), genetic algorithms canoperate on
any date type. In fact, most recent scheduling implementations use list-basedrepresentations. But
whether the representation is a string of bits or a tree of instructions, anyrepresentation must have
appropriate genetic operators defined for it. The representationdetermines the bounds of the search
space, but the operators determine how the space can betraversed.
The following representation for scheduling is a minimal representation that can representresource-
infeasible solutions. As shown in Figure 3, a genome consists of an array of relativestart times and an
array of integer execution modes for each task. Each time represents theduration from the latest finish of
all predecessor tasks to the start time of the corresponding task.
Each mode represents which of the possible execution modes will be used for the correspondingtask. As
shown in the figure, the modes are typically defined in terms of resourcerequirements. This
representation is not order-based. The elements in the array correspond tothe tasks in the work order or
project plan, but the order of elements relative to each other isinsignificant. Each genome is a complete
schedule; the genome directly represents a scheduleby encoding both start times (explicitly) and
resource assignments (via the execution mode).

Razi and Razi

IJERT Volume 5[4] 2014 29 | P a g e © 2014 Society of Education, India

Figure 3The genome and its mapping to the schedule. A single genome is adouble array of floating-
point start times and integer execution modes. Eachelement in the arrays corresponds to a task in
the project plan or work order. Thetimes represent delay times relative to the estimated finish
time of the predecessors.The execution modes vary from task to task and represent one of the
possibleexecution modes for the corresponding task.

Genetic Operators
Use of a genetic algorithm requires the definition of initialization, crossover, and mutationoperators
specific to the data type in the genome. In addition, a comparison operator must alsobe defined for use
with niching/speciating genetic algorithms such as the struggle geneticalgorithm.
Initialization: The real number part of the genome was initialized with random numbers. The range
ofpossible values was based upon the average estimated task durations. The magnitude of thenumbers
matters because the algorithm finds better solutions faster if the random numbers arethe same order of
magnitude as the task durations.
Crossover: The crossover operator included two parts, one for each data type in the genome.
Blendcrossover, a real-number-based operator, was used for the array of time values. Uniformcrossover,
a type-independent operator, was used for the array of execution modes.
Mutation: Mutation was performed by applying Gaussian noise to each element in the real number
arrayand by flipping modes in the mode array. Themean is equal to the previous value. The deviation
should be adaptive, but in the testsreported in this thesis, the deviation used to define the Gaussian curve
was fixed.
Similarity Measure: The similarity function compares two solutions and returns a value that indicates
how much thesolutions differ. Often called a ’distance’ function, this operator is typically used by
speciatinggenetic algorithms. Many different similarity measures can be defined for any
givenrepresentation. This section describes two similarity measures for the scheduling genome:
adistance-based measure (Euclidean) and a sequence-based measure (Sequence). Both of thesesimilarity
measures neglect the mode components of the genome.
Objective Function: The genome performance measure, often referred to as the objective function,
consists of twoparts, each based upon the schedule the genome represents. The first part is a measure
ofconstraint satisfaction, the second part is based on the schedule performance with respect to
theobjectives. Since the genome directly represents a schedule, calculation of both measures
isstraightforward. Some typical constraint and objective measures are outlined in this section,followed by
an explanation of how the constraint and objective measures were combined toproduce the overall score
for each genome.
Constraints
Most measurements of constraint satisfaction were based upon resource profiles. Resource profilesdefine
resource availability or consumption as a function of time.
Resource Availability: Part of the planning stage is the definition of resource availability. For each
resource, a profileof availability can be generated to indicate when and how much of that resource will
beavailable. Note that this representation encompasses both resource quantity and temporal restrictions
onresource usage.
Temporal Constraints: If a task must be started at a specific time, then the corresponding start time in
the genome isadjusted by the genetic operators so that the task always starts at that time. If a resource

Razi and Razi

IJERT Volume 5[4] 2014 30 | P a g e © 2014 Society of Education, India

isavailable only at certain times or for a certain duration, this is reflected in the construction of
theavailability profile for that resource.
Precedence Feasibility: Precedence feasibility is enforced by the representation and genetic operators,
so precedenceinfeasiblesolutions are not possible.
Objectives: Many different measures of schedule performance exist. The representation described in
Section4.3 permits modification of objective measures with little or no effect on the search algorithm
orgenetic representation. The next three sections highlight some of the more commonperformance
measures.
Due Dates and Tardiness: The performance of many projects is measured in terms of due dates or
deviation from projectedfinish times. These measures are calculated directly from the schedule. For
example, if a workorder specifies that 80% of the jobs must be completed by their specified finish times,
theperformance measure can be calculated directly
Cost: The total cost of a schedule can be found by adding the individual costs of each activity giventhe
execution mode and resources applied to it. Since the schedule is explicitly defined, anygenome can be
used to calculate a net-present value or virtually any other cost measurement ofperformance. If each task
has a cost, ci, determined from the scheduled modes, then the totalcost is simply the sum of the costs of
each task.
Makespan: The length of time required to complete a schedule is calculated directly from the information
inthe genome. The makespan is simply the finish time of the last task. Note that a schedule mayindicate a
makespan when, in fact, that schedule is infeasible due to violations of resourceconstraints.
Composite Scoring: The score for any genome consists of two parts: a constraint satisfaction part and an
objectiveperformance part. Since the objective measures are, in practice, meaningless if the schedule
isinfeasible, none of the objectives are considered until all of the constraints have been satisfied.
The degree to which constraints are violated determines how feasible the schedule is, and if theschedule
is feasible the objective performance is then considered.
Constraint Satisfaction Part: Each schedule contains multiple constraints, each of which measures some
aspect of thefeasibility of the schedule. For each constraint, i, a measure of constraint violation, xi,
wasdefined. For resource availability, the constraint violation measure was equal to the
differencebetween the resources available and the resources required. Temporal constraints were
typically measured based on the variance between actual times and desired times.
Objective Performance Part:A project may have a single objective or multiple, possibly conflicting,
objectives. Eachobjective is normalized then the lot is averaged to form the overall objective
performance.Each objective is normalized to a scale from 0 to 1, inclusive, where 1 indicates
perfectsatisfaction of the objective measure. The normalization is done using the specifications-
basedtransformations described in the previous section.

RESULT AND DISCUSSION
The Test Problems: The genetic algorithm was run on the following sets of test problems: Patterson’s
project scheduling problems (PAT)single mode project scheduling set by Kolisch et al (SMCP)single-mode
full-factorial set by Kolisch et al (SMFF)multi-mode full-factorial set by Kolisch et al (MMFF)job-shop
problems from the operations research warehouse (JS)the benchmarx problems by Fox and Ringer
(BMRX).
First introduced by James Patterson in his comparison of exact solution methods for
resourceconstrainedproject scheduling, the Patterson set (PAT) consists of 110 project
schedulingproblems whose tasks require multiple resources but are defined with only one execution
mode.
The problems in the Patterson set are considered easy. First of all, with only 7-48 tasks perproblem, the
problems are not very big. Perhaps more importantly, the resource constraintsare not very tight; in many
cases the optimal resource-constrained solution is the same as theresource-unconstrained solution.
Kolisch described a method for generating project scheduling problems based on variousparameters for
controlling number of tasks, complexity of precedence relations, resourceavailability, and other measures
(Rossi et al., 2006). The SMCP, SMFF, and MMFF problem sets weregenerated using ProGen, Kolischs
implementation of the algorithm he described.
The single mode set (SMCP) are similar to the Patterson set, but they range in size from 10 to 40tasks and
include more resource restrictions. The set includes 200 problems with 1 to 4renewable resource types.
Each task has only one execution mode.
The single mode full factorial set (SMFF) consists of 480 problems. Each problem has 30 tasksand 1 to 4
resource types, all renewable. Each task has only one execution mode. The set wasgenerated by varying

Razi and Razi

IJERT Volume 5[4] 2014 31 | P a g e © 2014 Society of Education, India

three parameters: network complexity, resource factor, and resourcestrength. These factors correspond
roughly to the interconnectedness of the task dependencies,the number of resource types that are
available, and resource quantity availability.
The multi-mode, full factorial set (MMFF) consists of 538 problems that are known to havefeasible
solutions from an original set of 640. The possibility of generating problems with nosolution arises with
the addition of non-renewable resources. The problems include fourresource types, two renewable and
two non-renewable. The number of activities per project is
10, and each activity has more than one execution mode. The set was generated by varyingthree
parameters: network complexity, resource factor, and resource strength. Complete detailsof the problem
generation are given in Kolisch description.
The jobshop problems (JS) are from the Ôjobshop1Õ compilation of problems from the
operationsresearch library (Parr, 2009). The set consists of 82 problems commonly cited inthe literature.
The problems are the standard nxmjobshop formulation in which n jobs with msteps (tasks) are assigned
to m machines (resources). They range in size from 6x6 to 15x20. Inother words, they range from 36
tasks and 6 resources to 300 tasks and 20 resources. Each taskhas its own estimated duration, and each
task must be performed by one (and only one)resource in a specific order. The objective of each problem
is to minimize the makespan.
Descriptions of the problems may be found in (Caseau and Laburthe, 1994). The benchmarx problem was
proposed by Barry Fox and Mark Ringer in early 1995. It is asingle problem with 12 parts. Each part adds
additional constraints or problem modificationsthat test various aspects of a solution method. The first
four parts are fairly standardformulations. It gets harder from there. The problem is large: 575 tasks, 3
types of laborresources and 14 location-based resources. In addition to resource/location constraints,
itincludes many temporal restrictions such as three shifts per day with resources limited to certainshifts
and task start/finish required within a shift or allowed to cross shifts. The last of thetwelve parts includes
multiple objectives. By varying resource availability and work ordersafter a schedule has been
determined, the problem also tests the ability of solution methods toadapt to dynamic changes.
The characteristics of the problem sets are summarized in Table 1. With the exception of the lasteight
parts of the benchmarx problem, optimal solutions and best-known solutions arecommonly available.

Table 1 Characteristics of the test suites. Tasks in the project scheduling problems typically required more
than one resource per task, whereas those in the job-shop problems required only one resource per task. All
of the problems have feasible solutions. Optimal solutions are known for many of the problems, best-known
solutions are used for comparison when no optimal solution is known.

Although the representation supports multiple objectives, with theexception of the benchmarx problem,
the objective for all of these problem sets was only tominimize the makespan. In addition, only the
benchmarx problem specifies temporalconstraints. All of the problems with renewable resources specify
uniform resource availability,so a feasible solution is guaranteed for those problems. The multi-mode full
factorial setincludes non-renewable resources, so a feasible solution is not guaranteed for problems in
thisset. However, the published results of Sprecher and Drexl show optimal solutions for the
538problems in the MMFF set.

Razi and Razi

IJERT Volume 5[4] 2014 32 | P a g e © 2014 Society of Education, India

Most of the results were achieved using a steady-state genetic algorithm. However, some runswere made
using the struggle genetic algorithm in order to evaluate the effects of speciation onthe genetic algorithm
performance on these problems.
No specific attempt was made to tune the genetic algorithm; it was run for a fixed number ofgenerations
with roulette wheel selection, a reasonable mutation rate, population size, andreplacement rate.
The genetic algorithm required no modifications to switch between any of these problem
sets.Thebenchmarx problem required additional data structures to include shift constraints andother
modeling parameters, but no change to the algorithm or genome was required.
Genetic Algorithm Performance
Figures 4 summarize the performance of the genetic algorithm on the PAT, SMCP, SMFF,MMFF, and JS
problem sets. In each figure, the results of the genetic algorithm are compared tothe optimal score if it is
known, or the published best if an optimal score is not known. In theseproblem sets, the performance
measure is simply the makespan. The figures show the geneticalgorithm performance relative to the best
solution, so a value of 0% means that the geneticalgorithm found the optimal makespan, a value of 100%
means that the genetic algorithm foundamakespan twice as long as the published best.

Figure 4 Summary of best, mean, and worst genetic algorithm performance on thePatterson
problem set using a steady-state genetic algorithm for 500 generations withpopulation size of 50
individuals (PAT-SS-500-50).

Figure 5 Summary of best, mean, and worst genetic algorithm performance on thesingle-mode full
factorial problem set using a steady-state genetic algorithm for 500generations with a population
size of 50 individuals (SMFF-SS-500-50).

 Figure
6 Summary of best, mean, and worst genetic algorithm performance on thejobshop problems
using a steady-state genetic algorithm for at most 2000generations with a population size of 50
individuals (JS-SS-2000-50).

Razi and Razi

IJERT Volume 5[4] 2014 33 | P a g e © 2014 Society of Education, India

In general, the genetic algorithm took more time than would the equivalent enumerative searchor
heuristic scheduler. However, it is important to note that no attempt was made to tune thegenetic
algorithm parameters. This set of tests focused entirely on creating a representation andset of operators
for a baseline comparison; these results represent the worst-case for thisalgorithm and
representation.One important area in which the genetic algorithm out-performed the exact solution
method of Sprecher et al was the multi-modal problems. The genetic algorithm performed well on
someproblems that were very difficult for the branch and bound techniques (i.e. the branch andbound
method took a long time to find the optimal solution).Typical run times for a single evolution ranged from
a few seconds for 100 generations on asmall Patterson problem to over one hour for 5,000 generations on
a large jobshop problem.
Implementation details
All of the tests were run using a single implementation of the genetic algorithm; althoughminor changes
were made to read various data formats and to accommodate different sets ofobjectives and types
constraints, no changes to the genome or genetic algorithm were required.
The implementation was written in C++ using GAlib, a C++ library of genetic algorithmcomponents
developed by the author. Tests were run on a variety of Silicon Graphicsworkstations with MIPS R4x00
CPUs running at 100 to 150 MHz.

CONCLUSION
There is a distinct need for more realistic problem sets. In particular, no problem sets exist withmultiple
objectives, and the few that include multiple execution modes are far too easy. Only the Benchmarx set
includes temporal constraints. Creating such problem sets is no trivialmatter; these problems are difficult
to formulate even when many simplifying assumptions aremade. The Benchmarx set is a step in the right
direction.
The genetic algorithm performed best (compared to exact solution methods) on the problemswith multi-
modal activities. The extra combinations introduced by the multiple executionmodes did not hurt the
genetic algorithm performance. In fact, in some cases it made theproblem easier for the genetic algorithm
whereas it made the search more difficult for thebranch and bound methods. This suggests that the
genetic algorithm (or a hybrid whichincludes some kind of genetic algorithm variant) is well-suited to
more-complicated problemswith a mix of continuous and discrete components.
As illustrated in Figures 5, the genetic algorithm did not perform well on problems inwhich the resources
were tightly constrained. This comes as little surprise since therepresentation forces the genetic
algorithm to search for resource-feasibility, and tightlyconstrained resources mean fewer resource-
feasible solutions. As is the case with mostoptimization methods, adding more constraints correlates to
increased difficulty in solving theproblem.
As illustrated in Figure 6, the genetic algorithm did not perform well on the job shop problems.
This is due to the structure of the jobshop problems. As illustrated in Figure 3, the job shop problems are
typically parallel in nature. Since the representation uses relative times,modification of a single value
affects all successive activities if they depend strictly upon thepredecessor tree of the activity being
modified. As a result, one small change has a great affecton a large part of the schedule. A typical project
plan, on the other hand, has moreinterconnections, so a change to a single activity may not affect directly
as many successors.
The struggle genetic algorithm consistently found better solutions than the steady-statealgorithm at some
cost in execution time. Since it must make comparisons and often discardsnewly created individuals, the
struggle genetic algorithm performs more evaluations than thesteady-state genetic algorithm, but it
always found feasible solutions, whereas in some runs thesteady-state algorithm did not. The struggle
algorithm deserves more study, in particular withrespect to comparison methods of genomes and
parallelization of the algorithm.
The representation described in this work is minimal (or nearly so) for this class of problems. If,as Davis
notes [Davis 85], there is an inverse relationship between knowledge in arepresentation and its
performance, then the methods described in this work can be improvedupon a great deal.
What can be done to improve the genetic algorithm performance? Hybridize the representationand/or
algorithm and improve the operators. Combining the genetic algorithm with anothersearch algorithm
should provide immediate improvement. A hybrid representation thatexplicitly contains both the
resource-constraints as well as the precedence constraints wouldpermit the algorithm to attack the
problem from both the resource-constraint perspective as wellas the precedence/temporal constraint
perspective. Alternatively, a hybrid that maintains bothabsolute and relative times but operates on one or
the other depending on the problemcomplexity and/or structure might improve the poor performance on

Razi and Razi

IJERT Volume 5[4] 2014 34 | P a g e © 2014 Society of Education, India

problems with parallelstructure such as the job shop problems. Finally, the crossover and mutation
operators can betuned to adapt to specific problem structures. For example, one might use a mutator that
looksat the parallel/serial nature of the precedence relations as it makes its modifications.

REFERENCES
1. J. Christopher Beck and Philippe Refalo. (2003). A hybrid approach to scheduling with earliness and tardiness

costs. Annals OR, 118(1-4):49–71.
2. Peter Brucker. Scheduling Algorithms, 4th Edition.Springer, 2004. 14.
3. C. Blum and M. Sampels. An ant colony optimization algorithm for shop scheduling problems. Journal of

Mathematical Modelling and Algorithms, 3(3):285–308, 2004.
4. Mauro Birattari, Zhi Yuan, PrasannaBalaprakash, and Thomas Stützle. Automated algorithm tuning using f-races:

Recent developments. In M. Caserta and S. Voß, editors, Proceedings of MIC 2009, the 8thMetaheuristics
International Conference, page 10 pages, 2009.

5. HadrienCambazard and NarendraJussien. Identifying and exploiting problem structures using explanation-based
constraint programming. Constraints, 11(4):295–313, 2006.

6. Yves Caseau and François Laburthe. (1994). Improvedclp scheduling with task intervals.In Proc. 11th Intl. Conf.
on Logic Programming, 1994.

7. A. Cesta, A. Oddi, and Stephen F. Smith. (2000). AIterative flattening: A scalablemethod for solving multi-capacity
scheduling problems. In Proceedings of AAAI .

8. J. Carlier and E. Pinson. A practical use of jackson’s preemptive schedule for solving the job-shop problem. Annals
of Operation Research,26(1-4):269–287, 1990.

9. Eugeniusz Nowicki and Czeslaw Smutnicki. (2005). An advanced tabu search algorithm for the job shop problem.
J. of Scheduling, 8(2):145–159, 2005.

10. Terence Parr. Language Implementation Patterns: (2009). Create Your OwnDomain-Specific and General
Programming Languages. Pragmatic Bookshelf.

11. Francesca Rossi, Peter van Beek, and Toby Walsh. (2006). Handbook of ConstraintProgramming (Foundations of
Artificial Intelligence).ElsevierScience Inc., New York, NY, USA, 2006.

Razi and Razi

