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ABSTRACT 

Goal of Scheduling problem is optimization of a function in deciding a set of activities that must be executed under 
different constraints. There are two main types of constraints including are precedences between activities, and the 
availability of finite resources.This research presents a genetic algorithm approach to resource-constrained scheduling 
using adirect, time-based representation. The new representation encodes schedule information as a dual array of 
relative delay timesand integer execution modes. This representation includes time-varying resourceavailabilities and 
requirements. The genetic algorithm adapts todynamic factors such as changes to the project plan or disturbances in the 
schedule execution.The genetic algorithm was applied to over 1000 small job shop and project scheduling problems(10-
300 activities, 3-10 resource types). According to result based on computationally expensive, the algorithm performed 
fairly well on a wide variety of problems. In addition, the algorithm found solutions within 2% of published best in 60% 
of the project scheduling problems.The GA performed better than deterministic, bounded enumerative search methods 
for 10% of the 538 problems tested on project scheduling problems with multiple execution modes. 
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INTRODUCTION 
Scheduling consists in deciding when a set of activities must be executed under different constraints, in 
order to optimize a given objective. The two main types of constraints are precedences between activities, 
and the availability of finite resources. 
Common objectives are to minimize the total duration or to minimize the weighted sum of the tardiness 
of activities with respect to given due-dates (Blum and Sampels, 2004). Scheduling problems are very 
varied, both in application domains and in featured constraints. Some typical applications are 
manufacture scheduling, construction scheduling, code optimization in compilers, and pharmaceutical 
project planning (Cambazard and Jussien, 2006). 
Scheduling problems are optimization problems. Optimization problems may be defined in a constraint-
oriented way. In this setting, a problem is defined by decision variables, constraints on the decision 
variables and an objective function defined on the decision variables. The decision variables are the 
unknowns of the problem that must be fixed (Birattari, 2009). 
This document describes a genetic algorithm for finding optimal solutions to dynamic 
resourceconstrainedscheduling problems. Rather than requiring a different formulation for 
eachscheduling problem variation, a single algorithm provides promising performance on manydifferent 
instances of the general problem. Whereas traditional scheduling methods use search or scheduling rules 
(heuristics) specific to the project model or constraint formulation, thismethod uses a direct 
representation of schedules and a search algorithm that operates with noknowledge of the problem 
space. The representation enforces precedence constraints, and theobjective function measures both 
resource constraint violations and overall performance. 
In its most general form, the resource-constrained scheduling problem asks the following: 
Given a set of activities, a set of resources, and a measurement of performance, what is the bestway to 
assign the resources to the activities such that the performance is maximized? Thegeneral problem 
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encapsulates many variations such as the job-shop and flowshopproblems,production scheduling, and the 
resource-constrained project scheduling problem. 
Scheduling requires the integration of many different kinds of data. Constructing a schedule requires 
models of processes, definition of relationships between tasksand resources, definition of objectives and 
performance measures, and the underlying datastructures and algorithms that tie them all together. 
Schedules assign resources to tasks (or tasksto resources) at specific times. Tasks (activities) may be 
anything from machining operations todevelopment of software modules. Resources include people, 
machines, and raw materials (Christopher Beck and Philippe Refalo, 2003). 
Typical objectives include minimizing the duration of the project, maximizing the net presentvalue of the 
project, or minimizing the number of products that are delivered late.Planning and scheduling are 
distinctly different activities. The plan defines what must be doneand restrictions on how to do it, the 
schedule specifies both how and when it will be done. Theplan refers to the estimates of time and 
resource for each activity, as well as the precedencerelationships between activities and other 
constraints. The schedule refers to the temporalassignments of tasks and activities required for actual 
execution of the plan. In addition, anyproject includes a set of objectives used to measure the 
performance of the schedule and/or thefeasibility of the plan. The objectives determine the overall 
performance of the plan andschedule. 
Scheduling problems are dynamic and are based on incomplete data. No schedule is static untilthe project 
is completed, and most plans change almost as soon as they are announced. 
Depending on the duration of the project, the same may also be true for the objectives. Thedynamics may 
be due to poor estimates, incomplete data, or unanticipated disturbances. As aresult, finding an optimal 
schedule is often confounded not only by meeting existing constraintsbut also adapting to additional 
constraints and changes to the problem structure. 
Genetic algorithms are a stochastic search method introduced in the 1970s in the United Statesby John 
Holland [Holland 76] and in Germany by Ingo Rechenberg. Based onsimplifications of natural 
evolutionary processes, genetic algorithms operate on a population ofsolutions rather than a single 
solution and employ heuristics such as selection, crossover, andmutation to evolve better solutions. 

 
MATERIAL AND METHODS 
This section describes the solution method in five parts: (1) the problem model in the form ofassumptions 
about tasks and resources with their associated constraints, (2) the search method,(3) the schedule 
representation, (4) the genetic operators specific to the representation, and (5) the implementation of 
objectives and constraints. The problem model determines the variationsof problems that can be solved, 
the problem representation determines the bounds of the search space, the genetic operators determine 
how the space can be traversed, and the objectives and constraints determine the shape of the search 
space. 
The assumptions made when modeling a problem determine the variations of that problem thatthe model 
will support. The next three sections list assumptions about tasks, resources, andobjectives. The 
assumptions in the first two sections typically end up being constraints. Thethird section highlights some 
of the more common objectives that may be defined. Satisfactionof the constraints determines the 
feasibility of a solution, satisfaction of the objectives determines the optimality of a solution. 
Assumptions About Objectives 
Any objective measure can be used as long as it can be determined from a complete schedule.Examples of 
objectives include minimization of makespan, minimization of mean tardiness ofpart delivery times, 
maximization of net present value, and minimization of work-in-progress.Objectives may include more 
than one part. For example, minimization of the makespan maybe the primary objective, but only if it 
does not drive the cost above a certain threshold (Nowicki and Smutnicki, 2005). 
Search Method 
Genetic algorithms are a stochastic heuristic search method whose mechanisms are based 
uponsimplifications of evolutionary processes observed in Nature. Since they operate on more thanone 
solution at once, genetic algorithms are typically good at both the exploration and exploitationof the 
search space. Goldberg [Goldberg 89] provided a comprehensive description of the basicprinciples at 
work in genetic algorithms, and Michalewicz described many oftheimplementation details for using 
genetic algorithms with various data types. 
Most genetic algorithms operate on a population of solutions rather than a single solution. Thegenetic 
search begins by initializing a population of individuals. Individual solutions, orgenomes, are selected 
from the population, then mate to form new solutions. The mating process,typically implemented by 
combining, or crossing over, genetic material from two parents to formthe genetic material for one or two 
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new solutions, confers the data from one generation ofsolutions to the next. Random mutation is applied 
periodically to promote diversity. If the newsolutions are better than those in the population, the 
individuals in the population are replacedby the new solutions. This process is illustrated in Figure 1. 
 

 
Figure 1 Generic genetic algorithmflowchart. Many variations are possible,from various selection 

algorithms to awide variety of representation-specificmating methods. Note that there is noobvious 
criterion for terminating thealgorithm. Number-of-generations orgoodness-of-solution are typically 

used 
 

In traditional schedule optimization methods, the search algorithm is tightly coupled to theschedule 
generator. These methods operate in the problem space; they require informationabout the schedule in 
order to search for better schedules. Genetic algorithms operate in therepresentation space. They care 
only about the structure of a solution, not about what thatstructure represents. The performance of each 
solution is the only information the geneticalgorithm needs to guide its search. For example, a typical 
heuristic scheduler requiresinformation about the resources and constraints in order to decide which 
task should bescheduled next in order to build the schedule. The genetic algorithm, on the other hand, 
onlyneeds to know how a schedule is and how to combine two schedules to form anotherschedule.Having 
said that, many hybrid genetic algorithms exist which combine hill-climbing, repair,and other techniques 
which link the search to a specific problem space. 
Proper choice of representation and tailoring of genetic operators is critical to the performance ofa 
genetic algorithm. Although the genetic algorithm actually controls selection and mating, 
therepresentation and genetic operators determine how these actions will take place. Many 
geneticalgorithms appear to be more robust than they actually are only because they are applied 
torelatively easy problems. When applied to problems whose search space is very large andwhere the 
ratio of the number of feasible solutions to the number of infeasible solutions is low,care must be taken to 
properly define the representation, operators, and objective function,otherwise the genetic algorithm will 
perform no better than a random search. 
Some genetic algorithms introduce another operator to measure similarity between solutions inorder to 
maintain clusters of similar solutions. By maintaining diversity in the population, thealgorithms have a 
better chance of exploring the search space and avoid a common problem ofgenetic algorithms, 
premature convergence. After a population has evolved, all of the individualstypically end up with the 
same genetic composition; the individuals have converged to the samestructure. If the optimum has not 
been found, then the convergence is, by definition,premature. In most cases, further improvement is 
unlikely once the population has converged. 
The similarity measure is often referred to as a distance function, and these genetic algorithmsare 
referred to as speciatingorniching genetic algorithms. The similarity measure may be basedupon the data 
in the genome (genotype-based similarity), it may be based upon the genomeafter it has been 
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transformed into the problem space (phenotype-based similarity), or it mayintegrate some combination 
of these. 
The steady-state genetic algorithm uses overlapping populations. In each generation, a portionof the 
population is replaced by the newly generated individuals. This process is illustrated inFigure 2. At one 
extreme, only one or two individuals may be replaced each generation (closeto 100% overlap). At the 
other extreme, the steady-state algorithm becomes a simple geneticalgorithm when the entire population 
is replaced (0% overlap). 
 

 

 
 
Figure 2TheÒsteady-stateÓ genetic algorithm. This algorithm uses overlappingpopulations; only a 
portion of the population is replaced each generation. Theamount of overlap (percentage of 
population that is replaced) may be specifiedwhen tuning the genetic algorithm. 
 
The struggle genetic algorithm is similar to the steady-state genetic algorithm. However, ratherthan 
replacing the worst individual, a new individual replaces the individual most similar to it,but only if the 
new individual has a score better than that of the one to which it is most similar.This requires the 
definition of a measure of similarity (often referred to as a distance function).The similarity measure 
indicates how different two individuals are, either in terms of theiractual structure (the genotype) or of 
their characteristics in the problem-space (the phenotype). 
The struggle genetic algorithm was developed by Gr.ninger in order to adaptively maintaindiversity 
among solutions. As noted previously, if allowed to evolve longenough, both the simple and the steady-
state algorithms converge to a single solution;eventually the population consists of many copies of the 
same individual. Once the populationconverges in this manner, mutation is the only source of additional 
change. Conversely, apopulation evolving with a struggle algorithm maintains different solutions (as 
defined by thesimilarity measure) long after a simple or steady-state algorithm would have 
converged.Unlike other niching methods such as sharing or crowding (Brucker, 2004), the struggle 
algorithm requires no niching radius or otherparameters to tune the speciation performance. 
Genetic Representation 
Although much of the early genetic algorithm literature in the United States has focused on 
bitrepresentations (i.e. solutions were encoded as a series of 1s and 0s), genetic algorithms canoperate on 
any date type. In fact, most recent scheduling implementations use list-basedrepresentations. But 
whether the representation is a string of bits or a tree of instructions, anyrepresentation must have 
appropriate genetic operators defined for it. The representationdetermines the bounds of the search 
space, but the operators determine how the space can betraversed. 
The following representation for scheduling is a minimal representation that can representresource-
infeasible solutions. As shown in Figure 3, a genome consists of an array of relativestart times and an 
array of integer execution modes for each task. Each time represents theduration from the latest finish of 
all predecessor tasks to the start time of the corresponding task. 
Each mode represents which of the possible execution modes will be used for the correspondingtask. As 
shown in the figure, the modes are typically defined in terms of resourcerequirements. This 
representation is not order-based. The elements in the array correspond tothe tasks in the work order or 
project plan, but the order of elements relative to each other isinsignificant. Each genome is a complete 
schedule; the genome directly represents a scheduleby encoding both start times (explicitly) and 
resource assignments (via the execution mode). 
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Figure 3The genome and its mapping to the schedule. A single genome is adouble array of floating-
point start times and integer execution modes. Eachelement in the arrays corresponds to a task in 
the project plan or work order. Thetimes represent delay times relative to the estimated finish 
time of the predecessors.The execution modes vary from task to task and represent one of the 
possibleexecution modes for the corresponding task. 
 
 
Genetic Operators 
Use of a genetic algorithm requires the definition of initialization, crossover, and mutationoperators 
specific to the data type in the genome. In addition, a comparison operator must alsobe defined for use 
with niching/speciating genetic algorithms such as the struggle geneticalgorithm. 
Initialization: The real number part of the genome was initialized with random numbers. The range 
ofpossible values was based upon the average estimated task durations. The magnitude of thenumbers 
matters because the algorithm finds better solutions faster if the random numbers arethe same order of 
magnitude as the task durations. 
Crossover: The crossover operator included two parts, one for each data type in the genome. 
Blendcrossover, a real-number-based operator, was used for the array of time values. Uniformcrossover, 
a type-independent operator, was used for the array of execution modes. 
Mutation: Mutation was performed by applying Gaussian noise to each element in the real number 
arrayand by flipping modes in the mode array. Themean is equal to the previous value. The deviation 
should be adaptive, but in the testsreported in this thesis, the deviation used to define the Gaussian curve 
was fixed. 
Similarity Measure: The similarity function compares two solutions and returns a value that indicates 
how much thesolutions differ. Often called a ’distance’ function, this operator is typically used by 
speciatinggenetic algorithms. Many different similarity measures can be defined for any 
givenrepresentation. This section describes two similarity measures for the scheduling genome: 
adistance-based measure (Euclidean) and a sequence-based measure (Sequence). Both of thesesimilarity 
measures neglect the mode components of the genome. 
Objective Function: The genome performance measure, often referred to as the objective function, 
consists of twoparts, each based upon the schedule the genome represents. The first part is a measure 
ofconstraint satisfaction, the second part is based on the schedule performance with respect to 
theobjectives. Since the genome directly represents a schedule, calculation of both measures 
isstraightforward. Some typical constraint and objective measures are outlined in this section,followed by 
an explanation of how the constraint and objective measures were combined toproduce the overall score 
for each genome. 
Constraints 
Most measurements of constraint satisfaction were based upon resource profiles. Resource profilesdefine 
resource availability or consumption as a function of time. 
Resource Availability: Part of the planning stage is the definition of resource availability. For each 
resource, a profileof availability can be generated to indicate when and how much of that resource will 
beavailable. Note that this representation encompasses both resource quantity and temporal restrictions 
onresource usage. 
Temporal Constraints: If a task must be started at a specific time, then the corresponding start time in 
the genome isadjusted by the genetic operators so that the task always starts at that time. If a resource 
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isavailable only at certain times or for a certain duration, this is reflected in the construction of 
theavailability profile for that resource. 
Precedence Feasibility: Precedence feasibility is enforced by the representation and genetic operators, 
so precedenceinfeasiblesolutions are not possible. 
Objectives: Many different measures of schedule performance exist. The representation described in 
Section4.3 permits modification of objective measures with little or no effect on the search algorithm 
orgenetic representation. The next three sections highlight some of the more commonperformance 
measures. 
Due Dates and Tardiness: The performance of many projects is measured in terms of due dates or 
deviation from projectedfinish times. These measures are calculated directly from the schedule. For 
example, if a workorder specifies that 80% of the jobs must be completed by their specified finish times, 
theperformance measure can be calculated directly 
Cost: The total cost of a schedule can be found by adding the individual costs of each activity giventhe 
execution mode and resources applied to it. Since the schedule is explicitly defined, anygenome can be 
used to calculate a net-present value or virtually any other cost measurement ofperformance. If each task 
has a cost, ci, determined from the scheduled modes, then the totalcost is simply the sum of the costs of 
each task. 
Makespan: The length of time required to complete a schedule is calculated directly from the information 
inthe genome. The makespan is simply the finish time of the last task. Note that a schedule mayindicate a 
makespan when, in fact, that schedule is infeasible due to violations of resourceconstraints. 
Composite Scoring: The score for any genome consists of two parts: a constraint satisfaction part and an 
objectiveperformance part. Since the objective measures are, in practice, meaningless if the schedule 
isinfeasible, none of the objectives are considered until all of the constraints have been satisfied. 
The degree to which constraints are violated determines how feasible the schedule is, and if theschedule 
is feasible the objective performance is then considered. 
Constraint Satisfaction Part: Each schedule contains multiple constraints, each of which measures some 
aspect of thefeasibility of the schedule. For each constraint, i, a measure of constraint violation, xi, 
wasdefined. For resource availability, the constraint violation measure was equal to the 
differencebetween the resources available and the resources required. Temporal constraints were 
typically measured based on the variance between actual times and desired times. 
Objective Performance Part:A project may have a single objective or multiple, possibly conflicting, 
objectives. Eachobjective is normalized then the lot is averaged to form the overall objective 
performance.Each objective is normalized to a scale from 0 to 1, inclusive, where 1 indicates 
perfectsatisfaction of the objective measure. The normalization is done using the specifications-
basedtransformations described in the previous section. 
 
RESULT AND DISCUSSION 
The Test Problems: The genetic algorithm was run on the following sets of test problems: Patterson’s 
project scheduling problems (PAT)single mode project scheduling set by Kolisch et al (SMCP)single-mode 
full-factorial set by Kolisch et al (SMFF)multi-mode full-factorial set by Kolisch et al (MMFF)job-shop 
problems from the operations research warehouse (JS)the benchmarx problems by Fox and Ringer 
(BMRX). 
First introduced by James Patterson in his comparison of exact solution methods for 
resourceconstrainedproject scheduling, the Patterson set (PAT) consists of 110 project 
schedulingproblems whose tasks require multiple resources but are defined with only one execution 
mode. 
The problems in the Patterson set are considered easy. First of all, with only 7-48 tasks perproblem, the 
problems are not very big. Perhaps more importantly, the resource constraintsare not very tight; in many 
cases the optimal resource-constrained solution is the same as theresource-unconstrained solution. 
Kolisch described a method for generating project scheduling problems based on variousparameters for 
controlling number of tasks, complexity of precedence relations, resourceavailability, and other measures 
(Rossi et al., 2006). The SMCP, SMFF, and MMFF problem sets weregenerated using ProGen, Kolischs 
implementation of the algorithm he described. 
The single mode set (SMCP) are similar to the Patterson set, but they range in size from 10 to 40tasks and 
include more resource restrictions. The set includes 200 problems with 1 to 4renewable resource types. 
Each task has only one execution mode. 
The single mode full factorial set (SMFF) consists of 480 problems. Each problem has 30 tasksand 1 to 4 
resource types, all renewable. Each task has only one execution mode. The set wasgenerated by varying 
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three parameters: network complexity, resource factor, and resourcestrength. These factors correspond 
roughly to the interconnectedness of the task dependencies,the number of resource types that are 
available, and resource quantity availability. 
The multi-mode, full factorial set (MMFF) consists of 538 problems that are known to havefeasible 
solutions from an original set of 640. The possibility of generating problems with nosolution arises with 
the addition of non-renewable resources. The problems include fourresource types, two renewable and 
two non-renewable. The number of activities per project is 
10, and each activity has more than one execution mode. The set was generated by varyingthree 
parameters: network complexity, resource factor, and resource strength. Complete detailsof the problem 
generation are given in Kolisch description. 
The jobshop problems (JS) are from the Ôjobshop1Õ compilation of problems from the 
operationsresearch library (Parr, 2009). The set consists of 82 problems commonly cited inthe literature. 
The problems are the standard nxmjobshop formulation in which n jobs with msteps (tasks) are assigned 
to m machines (resources). They range in size from 6x6 to 15x20. Inother words, they range from 36 
tasks and 6 resources to 300 tasks and 20 resources. Each taskhas its own estimated duration, and each 
task must be performed by one (and only one)resource in a specific order. The objective of each problem 
is to minimize the makespan. 
Descriptions of the problems may be found in (Caseau and Laburthe, 1994). The benchmarx problem was 
proposed by Barry Fox and Mark Ringer in early 1995. It is asingle problem with 12 parts. Each part adds 
additional constraints or problem modificationsthat test various aspects of a solution method. The first 
four parts are fairly standardformulations. It gets harder from there. The problem is large: 575 tasks, 3 
types of laborresources and 14 location-based resources. In addition to resource/location constraints, 
itincludes many temporal restrictions such as three shifts per day with resources limited to certainshifts 
and task start/finish required within a shift or allowed to cross shifts. The last of thetwelve parts includes 
multiple objectives. By varying resource availability and work ordersafter a schedule has been 
determined, the problem also tests the ability of solution methods toadapt to dynamic changes. 
The characteristics of the problem sets are summarized in Table 1. With the exception of the lasteight 
parts of the benchmarx problem, optimal solutions and best-known solutions arecommonly available. 

 
Table 1 Characteristics of the test suites. Tasks in the project scheduling problems typically required more 
than one resource per task, whereas those in the job-shop problems required only one resource per task. All 
of the problems have feasible solutions. Optimal solutions are known for many of the problems, best-known 
solutions are used for comparison when no optimal solution is known. 

 
 

Although the representation supports multiple objectives, with theexception of the benchmarx problem, 
the objective for all of these problem sets was only tominimize the makespan. In addition, only the 
benchmarx problem specifies temporalconstraints. All of the problems with renewable resources specify 
uniform resource availability,so a feasible solution is guaranteed for those problems. The multi-mode full 
factorial setincludes non-renewable resources, so a feasible solution is not guaranteed for problems in 
thisset. However, the published results of Sprecher and Drexl show optimal solutions for the 
538problems in the MMFF set. 
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Most of the results were achieved using a steady-state genetic algorithm. However, some runswere made 
using the struggle genetic algorithm in order to evaluate the effects of speciation onthe genetic algorithm 
performance on these problems. 
No specific attempt was made to tune the genetic algorithm; it was run for a fixed number ofgenerations 
with roulette wheel selection, a reasonable mutation rate, population size, andreplacement rate. 
The genetic algorithm required no modifications to switch between any of these problem 
sets.Thebenchmarx problem required additional data structures to include shift constraints andother 
modeling parameters, but no change to the algorithm or genome was required. 
Genetic Algorithm Performance 
Figures 4 summarize the performance of the genetic algorithm on the PAT, SMCP, SMFF,MMFF, and JS 
problem sets. In each figure, the results of the genetic algorithm are compared tothe optimal score if it is 
known, or the published best if an optimal score is not known. In theseproblem sets, the performance 
measure is simply the makespan. The figures show the geneticalgorithm performance relative to the best 
solution, so a value of 0% means that the geneticalgorithm found the optimal makespan, a value of 100% 
means that the genetic algorithm foundamakespan twice as long as the published best. 
 
 

 
Figure 4 Summary of best, mean, and worst genetic algorithm performance on thePatterson 
problem set using a steady-state genetic algorithm for 500 generations withpopulation size of 50 
individuals (PAT-SS-500-50). 

 
 

 
Figure 5 Summary of best, mean, and worst genetic algorithm performance on thesingle-mode full 
factorial problem set using a steady-state genetic algorithm for 500generations with a population 
size of 50 individuals (SMFF-SS-500-50). 

 
 

 Figure 
6 Summary of best, mean, and worst genetic algorithm performance on thejobshop problems 
using a steady-state genetic algorithm for at most 2000generations with a population size of 50 
individuals (JS-SS-2000-50). 
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In general, the genetic algorithm took more time than would the equivalent enumerative searchor 
heuristic scheduler. However, it is important to note that no attempt was made to tune thegenetic 
algorithm parameters. This set of tests focused entirely on creating a representation andset of operators 
for a baseline comparison; these results represent the worst-case for thisalgorithm and 
representation.One important area in which the genetic algorithm out-performed the exact solution 
method of Sprecher et al was the multi-modal problems. The genetic algorithm performed well on 
someproblems that were very difficult for the branch and bound techniques (i.e. the branch andbound 
method took a long time to find the optimal solution).Typical run times for a single evolution ranged from 
a few seconds for 100 generations on asmall Patterson problem to over one hour for 5,000 generations on 
a large jobshop problem. 
Implementation details 
All of the tests were run using a single implementation of the genetic algorithm; althoughminor changes 
were made to read various data formats and to accommodate different sets ofobjectives and types 
constraints, no changes to the genome or genetic algorithm were required. 
The implementation was written in C++ using GAlib, a C++ library of genetic algorithmcomponents 
developed by the author. Tests were run on a variety of Silicon Graphicsworkstations with MIPS R4x00 
CPUs running at 100 to 150 MHz. 

 
CONCLUSION 
There is a distinct need for more realistic problem sets. In particular, no problem sets exist withmultiple 
objectives, and the few that include multiple execution modes are far too easy. Only the Benchmarx set 
includes temporal constraints. Creating such problem sets is no trivialmatter; these problems are difficult 
to formulate even when many simplifying assumptions aremade. The Benchmarx set is a step in the right 
direction. 
The genetic algorithm performed best (compared to exact solution methods) on the problemswith multi-
modal activities. The extra combinations introduced by the multiple executionmodes did not hurt the 
genetic algorithm performance. In fact, in some cases it made theproblem easier for the genetic algorithm 
whereas it made the search more difficult for thebranch and bound methods. This suggests that the 
genetic algorithm (or a hybrid whichincludes some kind of genetic algorithm variant) is well-suited to 
more-complicated problemswith a mix of continuous and discrete components. 
As illustrated in Figures 5, the genetic algorithm did not perform well on problems inwhich the resources 
were tightly constrained. This comes as little surprise since therepresentation forces the genetic 
algorithm to search for resource-feasibility, and tightlyconstrained resources mean fewer resource-
feasible solutions. As is the case with mostoptimization methods, adding more constraints correlates to 
increased difficulty in solving theproblem. 
As illustrated in Figure 6, the genetic algorithm did not perform well on the job shop problems. 
This is due to the structure of the jobshop problems. As illustrated in Figure 3, the job shop problems are 
typically parallel in nature. Since the representation uses relative times,modification of a single value 
affects all successive activities if they depend strictly upon thepredecessor tree of the activity being 
modified. As a result, one small change has a great affecton a large part of the schedule. A typical project 
plan, on the other hand, has moreinterconnections, so a change to a single activity may not affect directly 
as many successors. 
The struggle genetic algorithm consistently found better solutions than the steady-statealgorithm at some 
cost in execution time. Since it must make comparisons and often discardsnewly created individuals, the 
struggle genetic algorithm performs more evaluations than thesteady-state genetic algorithm, but it 
always found feasible solutions, whereas in some runs thesteady-state algorithm did not. The struggle 
algorithm deserves more study, in particular withrespect to comparison methods of genomes and 
parallelization of the algorithm. 
The representation described in this work is minimal (or nearly so) for this class of problems. If,as Davis 
notes [Davis 85], there is an inverse relationship between knowledge in arepresentation and its 
performance, then the methods described in this work can be improvedupon a great deal. 
What can be done to improve the genetic algorithm performance? Hybridize the representationand/or 
algorithm and improve the operators. Combining the genetic algorithm with anothersearch algorithm 
should provide immediate improvement. A hybrid representation thatexplicitly contains both the 
resource-constraints as well as the precedence constraints wouldpermit the algorithm to attack the 
problem from both the resource-constraint perspective as wellas the precedence/temporal constraint 
perspective. Alternatively, a hybrid that maintains bothabsolute and relative times but operates on one or 
the other depending on the problemcomplexity and/or structure might improve the poor performance on 
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problems with parallelstructure such as the job shop problems. Finally, the crossover and mutation 
operators can betuned to adapt to specific problem structures. For example, one might use a mutator that 
looksat the parallel/serial nature of the precedence relations as it makes its modifications. 
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