ORIGINAL ARTICLE

Weed species composition of Pineapple based cropping system at Northern Part of West Bengal, India.

Anup Kumar Sarkar^{1,2*}, Mallika Mazumder³ and Manas Dey⁴.

1Assistant Professor, Department of Botany, Dukhulal Nibaran Chandra College, Aurangabad, Murshidabad, West Bengal, India. Pin-742201.

2Former Guest Lecturer, Department of Botany, Prasanna Deb Women's College, Jalpaiguri,West Bengal, India.Pin-735101.

3Post Graduate Student, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India.Pin-733134.

4Assistant Teacher, Jurapani High School, Jurapani, Dhupguri, Jalpaiguri, West Bengal, India. Pin-735210. Email : anupsarkar.jpg@gmail.com

ABSTRACT

Weed flora is a common problem in any crop field. For the better management of crop understanding of weed vegetation is obligatory. Though Pineapple is one of the most stress tolerating plant but it cannot cope with a number of competitive weeds at a time. Hence, the present study was aimed at documenting the weeds in Pineapple fields of Northern part of West Bengal. Weed surveys are useful for determining the phytosociological and ecological status of weed species in agricultural fields and their impact on the crop. The purpose of this study was also to evaluate the level of the diversity and species richness of weed in the Pineapple field. Randomly selected 60 fields were surveyed using 1m X 1m quadrate. The coverage (percentage) of 1m and the average height of each species (cm) in each quadrate were measured. Species abundance was expressed as the average height (cm') and species diversity was calculated using Shanon-Wiener Index (H).

Key Words: Weed, Pineapple field, Phytosoiology, IVI, Community Index, Control, aggressiveness.

Received 16/04/2017

Revised 09/08/2017

Accepted 04/11/2017

How to cite this article:

A Kumar Sarkar, M Mazumder and M Dey. Weed species composition of Pineapple based cropping system in Northern Part of West Bengal, India.. Adv. Biores., Vol 8 [6] November 2017: 258-269.

INTRODUCTION

Weed is defined as "a plant out of place or an unwanted plant or a plant with a negative importance or plant that compete with man for the soil"[1].Weed flora is a common problem of every crop field and cause troublesome in crop field. For management of weed control it is necessary to determine the phytosociological status. Phytosociological surveys are very useful for determining the ecological status of weed species in crop fields [2] and impact of the weeds on the crop. Weed species occur in high abundance in all agricultural lands. Weeds having tendency of numerous seed production and efficient capability to resist the adverse environmental condition. They have effective spatial dispersal ability and/or persistent propagule like tuber, rhizome seeds etc[3-4]. Thus, weed propagule originating from adjacent sources have a high potential to penetrate and incorporate into an agricultural field. Presence of weeds is a serious problem of any commercial gardens or field and such weeds cause a great loss in yield. The control measure of such weed is a major challenge to the cultivated and managing authorities of the agricultural fields. The problem is same in the Pineapple fields. Pineapple dominates the world trade of tropical fruits, although other fruits have gained market share. It is the best positioned fruit since its trade is oriented to developed countries as Japan, USA and Europe communities [5]. Pineapple i.e., Ananas comosus (L) Merr. belonging to family Bromeliaceae is also considered as one of the important economic crops of West Bengal. Weed interference is one of the most important factors to decrease the yields of Pineapple up to 34% [6].

Pineapple is a non climacteric tropical fruit plant. It is the third most important tropical fruit in the world production after Bananas and Citrus.It is highly valued for its nutritional and nutraceutical properties. It has properties that help to fight against various illness and sicknesses such as sinusitis, arthritis, indigestion, infections of the stomach and intestines. Due to these utility it has a world wide demand. Pineapples grow well in on a wide range of soils. Some pineapples are grown on the upland sandy soils, but most of the commercially grown pineapples are on riverain silt loams, clay loams and clay high in organic matter, that have benefitted from improved drainage and water control systems. Best growth is achieved on well-drained, fertile, sandy loam soils with a pH range of 4.5-5.5. Although the pineapple plant is fairly resistant to drought, it requires a medium to high evenly distributed rainfall for good growth and the production of healthy fruits. It will grow with an annual rainfall as high as 2,500 mm once adequate drainage is provided [7]. Such a condition also favours the rapid growth of various types of weeds. Weeds are a major constraint to pineapple production and can incur a significant cost if not managed successfully. Pineapple plants are slow growing and do not cover the ground well enough to suppress weeds from developing in the first six to eight months of its growth. Competition from weeds is much more severe at this stage since the pineapple plants are less vigorous. This is the critical period for weed control in pineapple since this is the time when the plant needs the conditions that will ensure vigorous growth and establishment. The plants can take "care of themselves" after this stage. Weeds grow faster than the pineapple and compete with the crop for mineral nutrients, water and sunlight [8]. By so doing they reduce the growth, yields, quality and income to the farmer. Some weeds act as the alternative hosts to the several pathogen of the crop. Thus the study of weed diversity is of much importance for the maintenance and management of any crop.

MATERIAL AND METHODS

Study area:

West Bengal is one of the leading pineapple producing states in the country.In West Bengal Pineapple is widely cultivated in the northern part including the district Jalpaiguri Darjeeling and North Dinajpur.As the Northern region of the state diversity of unwanted plants in crop fields is very common, it is suitable for the study of Ecological relationships and community clustering of weeds. In this study, weed species are investigated in some famous and oldest Pineapple gardens of District Alipur Duar, Jalpaiguri, Coohbehar Darjeeling and Uttar Dinajpur.

DISTRICT	SUB-DIVISION	BLOCK
DARJEELING	SILIGURI	PHANSIDEWA, KHARIBARI
UTTAR-DINAJPUR	ISLAMPUR	CHOPRA, GOALPOKHAR-I, GOALPOKHAR-II
JALPAIGURI	SADAR	RAJGANJ, SADAR
	MALBAZAR	MALBAZAR, MATIALI
ALIPURDUAR	SADAR	KUMARGRAM
COOCHBEHAR	TUFANGANJ	TUFANGANJ-I AND TUFANGANJ-II

Table 1: Location of the study site

Vegetation survey and data analysis

The vegetation survey was undertaken During the cultivation time of 2014, 2015 and 2016. The weed diversity of the region was studied by quadrate method [1,2,9]. For this purpose regular excursions were arranged at least once in a week during the time of cultivation. Some excursions were conducted in the organic crop fields i.e., where pesticides were avoided. The excursions were arranged in such a way that it covered the entire study regions. As a result most of the weeds could be collected in different growth stages. All the weeds encountered in the field sites were collected and identified carefully. Random quadrate method was adopted for studying phytosociological attributes of weeds. All the weeds from each quadrate were collected separately in polythene bags. All the plant species encountered in quadrates were listed. Weed specimens were collected for confirmation of identification and some workers and official staffs of the garden were interviewed and questioned about problematic weeds in their gardens. In every field, five quadrate of 1 x 1 m² was used to vegetation survey. In each quadrate, the height of every plant species were measured. Species abundance was expressed as the average height (cm) of each species in each quadrate.

Identification

The collected weeds were identified on the spot and in the laboratory on the basis of their natural characters with the help of identification keys, Bengal Plants (D. Prains) [10] and other relevant literature. Herbarium Prepared from identified weeds are stored carefully.

Data Analysis Techniques:

To analyse the level of diversity in weed vegetation several phytosociological parameters like frequency, Relative frequency, density and Relative density etc., were calculated [11]. Then IVI of trees were made to determine the dominant species of the crop field.Dominance is a significant indicator of species composition in any ecosystem including crop field. The dominance of any species refers to its relative value or importance in its habitat . Or in other language it is the measure of the degree of influence of the species on the habitat. To asses the over all impact of a species Importance Value Index was determined by adding Relative frequency, Relative density and Relative Basal Area.

Frequency (%): Frequency refers to the degree of dispersion of individual species in an area and usually expressed in terms of percentage. It is calculated by the equation:

 $Frequency(\%) = \frac{No. of plot in which the species is present}{Total No. of plots sampled} \times 100$

Density: Density refers to the expression of the numerical strength of a species. It is calculated by the equation:

Density=No. individuals of the species Total No. of plots sampled

Relative Frequency (%):Relative Frequency is the degree of dispersion of individual species in an area in relation to the number of all the species occurred.

Relative Frequency (%) = $\frac{\text{Frequency of the species}}{\text{Frequency of all the species}} \times 100$

Relative Density (%): Relative Density is the measure of numerical strength of a speies in respect to the total number of individual of all the species. It can be determined by the equation. Relative Density = $\frac{\text{Density of the species}}{\text{Density of all the species}} \times 100$

Relative Dominance (%): Dominance is the parameter which is determined by the value of average height.For the comparative analysis Relative dominance is determined. It is the coverage value of a species with respect to the sum of coverage of the rest of the species in the area.

Relative dominance or Relative height = $\frac{\text{Average height of the species}}{\text{Average height of all the species}} \times 100$

Importance Value Index: Importance Value Index is used to determine the overall impact of each species in the community structure. It is calculated by the addition of the percentage values of the relative frequency, relative density and relative dominance (Relative Basala Area). IVI= Relative Frequency + Relative Density + Relative dominance

Data Processing and Phytosociological Analysis:

All the phtosociological data collected from different sources were tabulated and analysed individually. The data collected were used to compute some community indices like,

(a) **Species diversity (H')**: Species diversity was determined by the Shannon-Weiner Index (Shannon and Weiner, 1963). It was calculated by the equation,(H') = $-\sum [(ni / N) \ln (ni / N)]$ Where ni= IVI of individual species and N= total IVI of all the species[12].

(b) **Species dominance (Cd)**: Species dominance was calculated by the Simpson Index (Simpson, 1949): $Cd = \Sigma (ni/N)^2$, Where ni= IVI of individual species and N= total IVI of all the species [13].

(c)Equitability of evenness (e): Equitability of evenness is the measure of the degree of relative dominance of each species in the habitat. It was determined according to Pielou (1966) as: Evenness (e) = $H'/\log S$ where, H' = Shannon index. S = number of species [14].

RESULT AND DISCUSSION

The present study showed that Pineapple crop fields are rich in weed flora. A total of 99 weed species belonging to 39 angiosperm families were recorded from the study area. Most of the species of weed flora are herbaceous with broad leaf. Asteraceae was found to be the most dominant family in the weed flora of the studied crop with a percentage of (17.171%) followed by Poaceae (11.11%), Amaranthaceae(6.060%), Rubiaceae (5.050%) and Cyperaceae (4.040%) respectively. The rest of the families with their respective percentages are shown in Graph 1. Highest IVI was recorded for *Desmodium triflorum* (L.) DC and lowest IVI were recorded for *Ipomoea aquatica* Forssk.IVI was also good for *Cynodon dactylon* (L.) Pers., *Commelina diffusa* Burm. f., *Melastoma malabathricum* L., *Spermacoce alata* Aubl., *Auxonopus compressus* (Swartz.) P.Beauv. (Table 2).

Graph 1. Status of weed families with their respective percentages

Table.	2: Diffe	rent Phyto	osociologica	l values
--------	----------	------------	--------------	----------

Sl.	Name of The Plant	Family	H	D	Α	Fr	RD	RF	RH(%)
No						(%)	(%)	(%)	0.1000
1	Melastoma malabathricum L.	Melastomataceae	34.466	1.000	0.250	25.000	0.4151	2.2059	2.4323
2	Mitracarpus hirtus (L.) DC	Rubiaceae	12.512	3.900	0.166	16.666	1.6192	1.4705	0.8829
3	Colocasia esculenta (L.) Schott.	Araceae	11.500	1.250	0.083	6.666	0.5189	0.5881	0.8115
4	Commelina alffusa Burm. I.	Diantaginagaaa	28.///	2.500	0.750	30.000 E 000	1.0379	2.64/1	2.0308
5	Scoparia duicis L.	Claamaaaaa	9.333	1.000	0.050	5.000	0.4151	0.4411	0.0580
0	Oplismonus hurmonni (Potz)	Poacoao	14.727 0.270	1.375	0.165	13.333	0.5706	1.1704	1.0395
'	P Beauv	I Udcede	9.370	0.037	0.450	11.000	0.0153	1 0293	0.6612
8	Cynodon dactylon (L.) Pers.	Poaceae	14.300	3.727	2.050	55.000	1.5473	4.8531	1.0091
9	<i>Centella asiatica</i> (L.) Urb.	Apiaceae	13.500	1.111	0.166	15.000	0.4612	1.3235	0.9527
10	Leucas aspera (Willd.)Link	Lamiaceae	11.818	5.500	0.183	8.333	2.2834	0.7352	0.8340
11	Bulbostylis densa (Wall.) Hand	Cyperaceae	7.172	2.230	0.483	21.666			
	Mazz.						0.9258	1 9117	0 5061
12	Spermacoce alata Aubl	Rubiaceae	28 692	3 2 5 0	0.650	20.000	1 3493	1.7647	2 0248
13	Oldenlandia lactea (Willd.) DC	Rubiaceae	8.562	2.666	0.260	10.000	1.1068	0.8823	0.6042
14	Murdania nudiflora (L.)Brenan	Commelinaceae	8.350	4.000	0.333	8.333	1.6607	0.7352	0.5892
15	Dentella repens (L.)J.R.Forst. &	Rubiaceae	7.886	3.333	0.500	15.000			
	G.Forst.						1.3837	1.3235	0.5565
16	Cyperus rotundus L.	Cyperaceae	8.666	3.428	0.400	11.666	1.4232	1.0293	0.6115
17	Phyllanthus fraternus G.L.	Phyllanthaceae	7.750	1.333	0.066	6.666			
	Webster						0.5534	0.5881	0.5469
18	Hydrocotyle sibthorpioides Lam.	Araliaceae	11.122	2.578	0.816	31.666	1.0703	2.7941	0.7848
19	Hydrocotyle javanica Thunb.	Araliaceae	10.461	2.600	0.216	8.333	1.0794	0.7352	0.7382
20	Mukia maderaspatana (L.)	Cucurbitaceae	18.000	1.500	0.050	3.333			
	M.Roem.	.		0 == 0	0.400		0.6227	0.2940	1.2702
21	Lindernia crustacea (L.) F.Muell	Linderniaceae	5.545	2.750	0.183	6.666	1.1417	0.5881	0.3913
22	Lindernia ciliate (Colsm)	Linderniaceae	4.642	4.666	0.466	10.000	1 0 2 7 2	0 0022	0.2275
22	Kullingg brouifolig Dotth	Lindomiacoco	7666	2 000	0.100	F 000	1.9372	0.0023	0.5275
23	Agoratum conpuzoidos I	Astoraçõão	7.000	2.000	0.100	5.000	0.0303	0.5881	0.5410
25	Ageratum houstonianum Mill	Asteraceae	11 800	2 500	0.233	3 3 3 3	1.4331	0.3001	0.9000
26	Alternanthera sessilis (L) R Br	Amaranthaceae	10.944	2.300	0.000	13 333	1.0377	0.2910	0.0327
20	ex DC.	marantiaceae	10.711	2.250	0.500	15.555	0.9341	1.1764	0.7723
27	Xanthium strumarium L.	Asteraceae	20.500	2.000	0.100	5.000	0.8303	0.4411	1.4467
28	Hypericum japonicum Thunb.	Hypericaceae	7.214	3.500	0.233	6.666	1.4531	0.5881	0.5091
29	Ludwigia perennis L.	Onagraceae	20.235	1.888	0.283	15.000	0.7838	1.3235	1.4280
30	Persicaria hydroiper (L.)	Polygonaceae	12.866	3.750	0.250	6.666			
	Delarbre						1.5569	0.5881	0.9079
31	Oxalis corniculata L.	Oxalidaceae	8.608	3.285	0.383	11.666	1.3638	1.0293	0.6074
32	Oxalis debilis Kunth	Oxalidaceae	9.333	2.000	0.100	5.000	0.8303	0.4411	0.6586
33	Emilia sonchifolia (L.) DC. ex DC.	Asteraceae	22.400	1.000	0.083	8.333	0.4151	0.7352	1.5808
34	Alternanthera philoxeroides	Amaranthaceae	11.555	3.000	0.150	5.000			
	(Mart.) Griseb.						1.2455	0.4411	0.8154
35	Urena lobata L.	Malvaceae	23.400	1.000	0.083	8.333	0.4151	0.7352	1.6513
36	Acmella calva (DC.) R.K.Jansen	Asteraceae	15.000	2.000	0.066	3.333	0.8303	0.2940	1.0585
3/	Eclipta prostrata (L.) L.	Asteraceae	12.666	3.000	0.100	3.333	1.2455	0.2940	0.8938
38	Physalis minima L.	Solanaceae	12.500	1.500	0.200	13.333	0.0227	1.1/64	0.8821
39	Autonomus compressus (Sutertra)	Decesso	10.410	2.400	0.200	0.333	0.9904	0.7352	0.7550
40	P Beauw	Poaceae	14.000	4.000	1.400	30.000	1 6607	3 2253	0.9928
41	Portulaça oleraçea I	Portulacaceae	12 5 5 5	1 800	0.1500	8 3 3 3	0.7473	0.7352	0.9920
42	Oldenlandia diffusa (Willd)	Ruhiaceae	8736	3 1 6 6	0.1500	10,000	0.7475	0.7552	0.0000
	Roxh.	Rublaceue	0.700	0.100	0.010	10.000	1.3144	0.8823	0.6165
43	Stellaria media (L.) Vill.	Carvophyllaceae	9.115	3.714	0.433	11.666	1.5419	1.0293	0.6432
44	Boerhavia diffusa L.	Nyctaginaceae	11.736	4.750	0.316	6.666	1.9721	0.5881	0.8282
45	Dysphania ambrosioides	Amaranthaceae	19.444	1.125	0.150	13.333			
	(L.)Mosyakin & Clemants						0.4670	1.1764	1.3721
46	Commelina benghalensis L.	Commelinaceae	14.000	1.250	0.083	6.666	0.5189	0.5881	0.9880
47	Amaranthus spinosus L.	Amaranthaceae	12.962	1.928	0.450	23.333	0.8004	2.0588	0.9147
48	Trema orientalis (L.) Blume	Cannabaceae	18.750	1.333	0.066	5.000	0.5534	0.4411	1.3232
49	Chromolaena odoratum (L.)	Asteraceae	25.076	1.625	0.216	13.333			
	King & H.Rob		44	0.05-	0.11		0.6746	1.1764	1.7696
50	Evolvulus nummularius (L.) L.	Convolvulaceae	11.570	2.333	0.116	5.000	0.9686	0.4411	0.8165
51	Desmodium heterophyllum	гарасеае	10.730	2.888	0.433	15.000	1 1000	1 2225	0.7573
L	(willd.)DC.	1	1		1	1	1.1320	1.3233	0./3/2

F 2	Deeme dium trifferrum (L) DC	Fahaaaa	12 5 (0	2 5 7 1	0.022	02.222	1 4026	7 2521	0.00(2
52	Desmoaium trijiorum (L.) DC.	Fabaceae	12.560	3.5/1	0.833	83.333	1.4826	7.3531	0.8863
53	Mazus pumilus (Burm.f.)	Phrymaceae	6.375	2.666	0.133	5.000	4 4 9 4 9		
	Steenis.						1.1068	0.4411	0.4498
54	Amaranthus viridis L.	Amaranthaceae	17.250	1.333	0.066	6.666	0.5534	0.5881	1.2173
55	Eleocharis retroflexa (Poir.) Urb.	Cyperaceae	16.500	2.000	1.000	5.000	0.8303	0.4411	1.1644
56	Cyperus iria L.	Cyperaceae	18.560	3.571	0.416	11.666	1 4 8 2 6	1 0293	1 3098
57	Dhyla nodiflora (L.) Croopo	Vorbonaçõa	0.016	1625	0.216	0 2 2 2	0.6746	0.7252	0.6242
57	Cida a suta Duran f	Malwassa	0.040	2.000	0.210	0.333	1 1 () 5	1.4705	1 1007
50		Malvaceae	17.000	2.000	0.400	10.000	1.1025	1.4705	1.1997
59	Heliotropium indicum L.	Boraginaceae	12.333	2.250	0.300	13.333	0.9341	1.1/64	0.8703
60	Limnophila rugosa (Roth) Merr.	Plantaginaceae	13.642	2.800	0.233	8.333	1.1625	0.7352	0.9627
61	Glinus oppositifolius (L.) Aug.DC.	Molluginaceae	11.660	2.250	0.300	13.333	0.9341	1.1764	0.8228
62	Grangea maderaspatana (L.)	Asteraceae	18.100	3.000	0.306	33.333			
	Poir.						1.2455	2.9412	1.2773
63	Solanum americanum Mill.	Solanaceae	16.840	3.570	0.416	11.666	1.4821	1.0293	1.1884
64	Parthenium hysterophorus L.	Asteraceae	26.857	1.400	0.116	8.333	0.5812	0.7352	1.8953
65	Laphangium luteoalbum (L.)	Asteraceae	9.709	3.444	0.516	5.000			
	Tzvelev						1.4298	0.4411	0.6851
66	Melochia corchorifolia L	Malvaceae	23.150	1.300	0.216	16.660	0.5397	1.4700	1.6337
67	Cunhea procumbens Ortega	Lythraceae	8 205	4 2 5 0	0.566	13 333	1 7645	1 1 7 6 4	0 5790
68	Ludwiaia peruviana (L.) H Hara	Onagraceae	20.750	1.200	0.033	16,666	0.4982	1 4705	1 4643
60	Cardamino hirsuta I	Brassicacoao	10 3 8 0	3 000	0.035	11 666	1 2455	1.1703	0.7225
70	Eleverine in diag (L.) Caentre	Diassicaceae	10.300	2.000	0.330	10.222	1.2433	1.0293	0.7323
70	Eleusine Indica (L.) Gaerth.	Poaceae	10.390	3.909	0.716	18.333	1.6229	1.01/0	0.7332
/1	Rorippa indica (L.) Hiern	Brassicaceae	13./50	1.000	0.066	6.666	. .		
							0.4151	0.5881	0.9703
72	Clerodendrum infortunatum L.	Lamiaceae	23.346	1.733	0.433	25.000	0.7195	2.2059	1.6475
73	Mimosa pudica L.	Fabaceae	15.142	1.400	0.116	8.333	0.5812	0.7352	1.0685
74	Echinochloa colona (L.) Link	Poaceae	14.125	4.000	0.066	3.333	1.6607	0.2940	0.9968
75	Digitaria sanguinalis (L.) Scop.	Poaceae	10.653	3.250	0.433	13.333	1.3493	1.1764	0.7517
76	Eragrostis unioloides (Retz.)	Poaceae	13.600	2.500	0.083	8.333			
	Nees ex Steud.						1.0379	0.7352	0.9597
77	Eraarostis amabilis (L.) Wiaht &	Poaceae	9.250	4.000	0.266	6.666			
	Arn.						1.6607	0.5881	0.6527
78	Chenonodium album L	Amaranthaceae	15 666	3 000	0.150	5 000	1 2455	0.4411	1 1055
79	Digitaria hicornis (Lam)Roemer	Poaceae	11 000	3 2 5 0	0.100	6.666	1.2 100	0.1111	1.1000
,,	& LA Schultes ex Loud	Toaccac	11.000	5.250	0.210	0.000	1 3493	0 5881	0 7762
00	Cannahia satiya I	Cannahagaaa	22.000	1 500	0.100	6666	0.6227	0.5001	1 6 2 2 1
00	Dhum og la ogna (Drumme f.) DC	Astarrassa	10.250	1.500	0.100	0.000	0.0227	0.5001	1.0231
01		Asteraceae	16.250	1.000	0.000	0.000	0.4151	0.5881	1.2879
82	Rumex maritimus L.	Polygonaceae	21.750	1.000	0.066	6.666	0.4151	0.5881	1.5349
83	Mecardonia procumbens	Plantaginaceae	11.100	3.333	0.166	5.000			
	(Mill.)Small						1.3837	0.4411	0.7833
84	Drymaria cordata (L.) Willd. Ex.	Caryophyllaceae	8.969	4.714	0.550	11.666			
	Schult.						1.9571	1.0293	0.6329
85	Mikania micrantha Kunth.	Asteraceae	21.400	1.000	0.833	3.333	0.4151	0.2940	1.5102
86	Synedrella nodiflora (L.) Gaertn.	Asteraceae	15.600	2.500	0.0833	3.333	1.0379	0.2940	1.1009
87	Saccharum spontaneum L.	Poaceae	50.666	3.000	0.1500	5.000	1.2455	0.4411	3.5755
88	Duchesnia crispa (Forssk.) Cass	Asteraceae	9.333	4.000	0.033	5.000	1.6607	0.4411	0.6586
89	Ficus hispida L.f.	Moraceae	18.500	1,000	0.033	3,333	0.4151	0.2940	1.3055
90	Croton honnlandianus Raill	Eunhorbiaceae	11 500	2 000	0.066	3 3 3 3	0.8303	0 2940	0.8115
91	Peneromia pellucida (L.) Kunth	Pineraceae	10 333	3 000	0.150	5,000	1 2455	0 4411	0 7292
02	Funhorhia hirta I	Funhorbiaceae	0 10.333	1 6 6 6	0.130	5.000	0.6016	0.4411	0.7292
74	Dagtulactonium commission (L)	Baggggg	7.400	1.000	0.003	5.000	0.0910	0.4411	0.0033
93	растуюстенит аедуртит (L.) маля	roaceae	14.800	1.000	0.033	5.000	0.0010	0 4 4 1 1	1 0 4 4 4
0.1	willa.		10 500	4.000	0.000	0.000	0.0916	0.4411	1.0444
94	<i>Ipomoea aquatica</i> Forssk.	Convolvulaceae	12.500	1.000	0.033	3.333	0.4151	0.2940	0.8821
95	Cyanthillium cinereum (L.)	Asteraceae	11.600	1.666	0.166	10.000			
	H.Kob.			L			0.6916	0.8823	0.8186
96	Ranunculus sceleratus L.	Ranunculaceae	26.400	1.666	0.0833	5.000	0.6916	0.4411	1.8630
97	Boehmeria nivea (L.) Gaudich.	Urticaceae	6.833	2.000	0.100	10.000	0.8303	0.8823	0.4822
98	Crassocephalum crepidioides	Asteraceae	12.666	1.000	0.050	5.000			
	(Benth.) S.Moore						0.4151	0.4411	0.8938
99	Leucas zeylanica (L.) W.T.Aiton	Lamiaceae	10.692	1.857	0.216	11.666	0.7709	1.0293	0.7545

D= Density, Fr= Frequency,H=Height or Length, RD=Relative Density,RF= Relative Frequency,RH= Relative Height or Length

Table.	3: Different	Community	Inde	values
--------	--------------	-----------	------	--------

SI. No	Name of The	IVI	SI	Cd	Е
1	Melastoma malabathricum L.	5.0533	0.068779792	0.0002836	0.20800394
2	Mitracarpus hirtus (L.) DC	3.9726	0.057256331	0.0001752	0.81137074
3	Colocasia esculenta (L.) Schott.	1.9185	0.032305025	0.0000408	0.26001746
4	<i>Commelina diffusa</i> Burm. f.	5.7158	0.075450207	0.0003628	0.52008503
5	Scoparia dulcis L.	1.5148	0.026700017	0.0000254	0.20800394
6	Cleome rutidosperma DC.	2.7865	0.043454746	0.0000862	0.28602422
7	Oplismenus burmanni (Retz.) P.Beauv.	1.7058	0.029391491	0.0000323	0.00766673
8	Cynodon dactylon (L.) Pers.	7.4095	0.091398608	0.0006098	0.77534211
9	Centella asiatica (L.) Urb.	2.7374	0.042851235	0.0000832	0.23110436
10	Leucas aspera (Willd.)Link	3.8526	0.055920629	0.0001648	1.14419710
11	Bulbostylis densa (Wall.) HandMazz.	3.3436	0.050111525	0.0001241	0.46391244
12	Spermacoce diata Aubi.	5.1388	0.069656169	0.0002933	0.67612558
13	Oldenianala lactea (Willa.) DC.	2.5933	0.041062885	0.0000746	0.02216612
14	Dentella ranges (L) LP Forst & C Forst	2.9031	0.043800918	0.0000989	0.603210012
16	Cuperus ratundus L	3.0640	0.046812836	0.0001103	0.71315639
17	Phyllanthus fraternus G.L. Webster	1.6884	0.029149377	0.0000316	0.27730519
18	Hydrocotyle sibthorpioides Lam.	4.6492	0.064571085	0.0002400	0.53632046
19	<i>Hydrocotyle javanica</i> Thunb.	2.5528	0.040555518	0.0000494	0.54088042
20	Mukia maderaspatana (L.) M.Roem.	2.1869	0.035870159	0.0000531	0.31203097
21	Lindernia crustacea (L.) F.Muell	2.1211	0.035006855	0.0000499	0.57209855
22	Lindernia ciliate (Colsm) Pennell	3.1470	0.047800601	0.0001100	0.97071850
23	Kyllinga brevifolia Rottb.	1.8124	0.030862089	0.0000364	0.41605800
24	Ageratum connyzoides L.	3.0292	0.04639647	0.0001019	0.72813909
25	Ageratum houstonianum Mill.	2.1646	0.03557833	0.0000520	0.52008503
26	Alternanthera sessilis (L.)R.Br. ex DC.	2.8828	0.044630086	0.0000923	0.46807152
27	Xanthium strumarium L.	2.7181	0.042613209	0.0000820	0.41605800
28	Hypericum Japonicum Thunb.	2.5503	0.040524129	0.0000722	0.72813909
29	Ludwigia perennis L.	2.5353	0.052327715	0.0001388	0.392/5/15
30	Ovalis corniculata I	3.0329	0.040000173	0.0001033	0.68339143
32	Ovalis debilis Kunth	1 9300	0.032460228	0.0001000	0.41605800
33	Emilia sonchifolia (L.) DC. ex DC.	2.7311	0.042773587	0.0000828	0.20800394
34	Alternanthera philoxeroides (Mart.) Griseb.	2.5020	0.039916086	0.0000695	0.62411206
35	Urena lobata L.	2.8016	0.043639765	0.0000871	0.20800394
36	Acmella calva (DC.) R.K.Jansen	2.1828	0.035816562	0.0000529	0.41605800
37	Eclipta prostrata (L.) L.	2.4333	0.03904586	0.0000657	0.62411206
38	Physalis minima L.	2.6812	0.042156849	0.0000798	0.31203097
39	Pouzolzia zeylenica (L.)Benn.	2.4666	0.039468469	0.0000675	0.49928965
40	Auxonopus compressus (Swartz.) P.Beauv.	5.8888	0.077148641	0.0003851	0.83216612
41	Portulaca oleracea L.	2.3685	0.038219114	0.0000622	0.37446723
42	Oldenlandia diffusa (Willd.) Roxb.	2.8132	0.043781714	0.0000879	0.65863741
43	Stellaria media (L.) Vill.	3.2144	0.048597337	0.0001147	0.77263620
44	Boernavia alffusa L.	3.3884	0.050632650	0.0001275	0.98820666
45	Commeling henghalonsis I	2.0155	0.046252191	0.0001010	0.25401070
47	Amaranthus sninosus I.	3 7730	0.05502547	0.0001581	0.40107530
48	Trema orientalis (L.) Blume	2 3177	0.037566862	0.0001501	0.27730519
49	Chromolaena odoratum (L.) King & H.Rob	3.6206	0.053302590	0.0001456	0.33803773
50	Evolvulus nummularius (L.) L.	2.2262	0.036382620	0.000055	0.48535925
51	Desmodium heterophyllum (Willd.)DC.	3.2797	0.049364755	0.0001194	0.60081121
52	Desmodium triflorum (L.) DC.	9.7220	0.111122855	0.0010498	0.74292135
53	Mazus pumilus (Burm.f.) Steenis.	1.9977	0.033369316	0.0000443	0.55461038
54	Amaranthus viridis L.	2.3588	0.038094853	0.0000617	0.27730519
55	Eleocharis retroflexa (Poir.) Urb.	2.4358	0.039077640	0.0000659	0.41605800
56	Cyperus iria L.	3.8217	0.055574684	0.0001622	0.74292135
57	Phyla nodiflora (L.) Greene	2.0340	0.033853592	0.000046	0.33803773
58	Sida acuta Burm.t.	3.8327	0.055697931	0.0001631	0.58252129
59	Hellotropium indicum L.	2.9808	0.045815168	0.0000986	0.46807152
61	Clinus oppositifolius (L.) Aug DC	2.8604	0.04435/665	0.0000908	0.58252129
62	Granapa maderasnatana (L.) Poir	2.7333 5 4640	0.072946814	0.0000933	0.4000/152
63	Solanum americanum Mill.	3.6998	0.054201750	0.0001520	0.74267080
64	Parthenium hysterophorus L.	3.2117	0.048565512	0.0001145	0.29123559
65	Laphangium luteoalbum (L.) Tzvelev	2.5560	0.040595684	0.0000725	0.71646361

66	Melochia corchorifolia L.	3.6434	0.053562026	0.0001474	0.27044021
67	Cuphea procumbens Ortega	3.5199	0.052150985	0.0001376	0.88417963
68	Ludwigia peruviana (L.) H.Hara	3.4330	0.051149488	0.0001309	0.24964482
69	Cardamine hirsuta L.	3.0073	0.046133765	0.0001004	0.62411206
70	Eleusine indica (L.) Gaertn.	3.9737	0.057268518	0.0001753	0.81322478
71	Rorippa indica (L.) Hiern	1.9735	0.033045246	0.0000447	0.20800394
72	Clerodendrum infortunatum L.	4.5729	0.063763577	0.0002322	0.36053683
73	Mimosa pudica L.	2.3849	0.038428905	0.0000631	0.29123559
74	Echinochloa colona (L.) Link	2.9515	0.045461995	0.0000967	0.83216612
75	Digitaria sanguinalis (L.) Scop.	3.2774	0.049337799	0.0001193	0.67612558
76	Eragrostis unioloides (Retz.) Nees ex Steud.	2.7328	0.042794545	0.0000829	0.52008503
77	Eragrostis amabilis (L.) Wight & Arn.	2.9015	0.044857065	0.0000935	0.83216612
78	Chenopodium album L.	2.7921	0.043523394	0.0000865	0.62411206
79	Digitaria bicornis (Lam.)Roemer & J.A. Schultes ex. Loud	2.7136	0.042557645	0.0000817	0.67612558
80	Cannabis sativa L.	2.8339	0.044034625	0.0000891	0.31203097
81	Blumea lacera (Burm.f.) DC.	2.2911	0.037223853	0.0000484	0.20800394
82	Rumex maritimus L.	2.5381	0.040370835	0.0000714	0.20800394
83	Mecardonia procumbens (Mill.)Small	2.6081	0.041247765	0.0000755	0.69336319
84	Drymaria cordata (L.) Willd. Ex. Schult.	3.6193	0.053287784	0.0001455	0.98069026
85	Mikania micrantha Kunth.	2.2193	0.036292814	0.0000547	0.20800394
86	Synedrella nodiflora (L.) Gaertn.	2.4328	0.039039503	0.0000657	0.52008503
87	Saccharum spontaneum L.	5.2621	0.070911667	0.0003075	0.62411206
88	Duchesnia crispa (Forssk.) Cass.	2.7604	0.043134301	0.0000846	0.83216612
89	Ficus hispida L.f.	2.0146	0.033595049	0.0000452	0.20800394
90	Croton bonplandianus Baill.	1.9358	0.032538418	0.0000416	0.41605800
91	Peperomia pellucida (L.) Kunth	2.4158	0.038823161	0.0000648	0.62411206
92	Euphorbia hirta L	1.7960	0.030637235	0.0000358	0.34655632
93	Dactyloctenium aegyptium (L.) Willd.	2.1771	0.035742005	0.0000526	0.34655632
94	Ipomoea aquatica Forssk.	1.5912	0.027785708	0.0000281	0.20800394
95	Cyanthillium cinereum (L.) H.Rob.	2.3925	0.038525997	0.0000635	0.34655632
96	Ranunculus sceleratus L.	2.9957	0.045994400	0.0000996	0.34655632
97	Boehmeria nivea (L.) Gaudich.	2.1948	0.035973361	0.0000534	0.41605800
98	Crassocephalum crepidioides (Benth.) S.Moore	1.7500	0.030003868	0.0000339	0.20800394
99	Leucas zeylanica (L.) W.T.Aiton	2.5547	0.040579368	0.0000724	0.38629304

DISCUSSION

Management of weeds in any crop field is very essential as the every weed has the capacity to reducee crop yield upto a significant level. Different weed interacts different way with the crop. Their activities are also dependent on the soil property and method of agricultural practices. Thus without proper information regarding the identification of weeds and determination of their phytosociological status it is impossible to control them. This is very important because without information about type of weeds in each crops, control of these weeds is not effective. Proper information of weeds also prevent the indiscriminate use herbicides for weed control and management. In this regard the present study is very significant because till date there is no such proper scientific documentation of weed vegetation in Pineapple crop field. Thus in this study several phytosociological parameters and community indices of weed flora associated with pineapple crop were determined.

The research was conducted in Pineapple growing seasons of 2014, 2015 and 2016. The study revealed that the weed flora associated with Pineapple based cultivation includes terrestrial, aquatic, semiaquatic, climbing, vines etc. Their habits are also variable. Thus different weeds of the Pineapple field should be controlled by different ways.Mostly species were belong broad leaf group.Among broad leaf weeds most of species belong Asteraceae family. Broadleaf weeds generally dominated all the surveyed locations than grasses and sedges and higher concentration of the broadleaf weeds was observed under the canopies of mature Pineapple plant. The weeds belong to the family Asteraceae show high colonizing power due to high fruit production and efficient fruit and seed dispersal mechanisms readily brought about by wind.Highest IVI was recorded for Desmodium triflorum (L.) DC, which belongs to Fabaceae family. Desmodium triflorum (L.) DC was also found most frequent weeds of the pineapple field due to less completion with Pineapple plant. Cynodon dactylon (L.) Pers. is one of the prominent weed of the present work. It is one of the most noxious weeds of cultivation and its spread is so great and its ravages are so serious that in certain places. The eradication of the weed is so difficult on account of the underground stems which are very hardly and are not easy to destruct. Treatment of weedicide is also thus ineffective to control *Cynodon dactylon* (L.) Pers. The weed control before the flowering time the flower stalks should be cut off with grass-cutting swords. Commelina diffusa Burm. f. and Murdania nudiflora (L.)Brenan had

also recorded good IVI and density as they produce both aerial and subterranean seeds and also reproduce vegetatively. If the weed is removed by hand or mechanically, stems break off and root at the nodes, producing new plants. Thus, deweeding may indirectly multiply the plant. On the other hand *Ipomoea aquatica* Forssk. had lowest IVI, as it is suitable for aquatic habitat and not suitable for Pineapple crop field. Thus the weed showed poor growth and propagation. This study also attributed to its high light requirement, soil quality, amount of rainfall and other climatic factors, aggressive growth, short life cycle, large seed production with potent explosive seed dispersal mechanism. The present study may be helpful for farmers and agriculturists to find out the effects of weeds on the yield of crops and also helps in finding the role of herbicides in controlling the work also recommend for further studies of allelopathic interation between host and weeds and also about the relation of aggressiveness with the mode of propagation of the weeds.

1. Cyperus iria L., 2. Commelina diffusa Burm.f., 3. Spermacoce alata Aubl., 4. Trema orientalis (L.) Blume, 5. Phyllanthus reticulatus Poir., 6. Amaranthus viridis L., 7. Ludwigia perennis L., 8. Glinus oppositifolius (L.) Aug.DC., 9. Eragrostis amabilis (L.) Wight & Arn., 10. Leucas aspera (Willd.) Link, 11. Clerodendrum infortunatum L., 12. Trema orientalis (L.) Blume, 13. Colocasia esculenta (L.) Schott., 14. Melastoma malabathricum L., 15. Mikania micrantha Kunth., 16. Cleome rutidosperma DC., 17. Lindernia crustacea (L.) F.Muell., 18. Limnophila rugosa (Roth) Merr., 19. Portulaca oleracea L., 20. Croton bonplandianus Baill.

21. Alternanthera philoxeroides (Mart.) Griseb., 22. Ficus hispida L.f., 23. Emilia sonchifolia (L.) DC. ex DC., 24. Mukia maderaspatana (L.) M.Roem., 25. Pouzolzia zeylanica (L.) Benn., 26. Cyperus iria L., 27. Kyllinga sp., 28. Xanthium strumarium L., 29. Hydrocotyle sibthorpioides Lam., 30. Hypericum japonicum Thunb., 31. Ludwigia perennis L., 32. Urena lobata L., 33. Bulbostylis densa (Wall.) Hand-Mazz., 34. Hydrocotyle sibthorpioides Lam. And Cynodon dactylon (L.) Pers., 35. Desmodium heterophyllum (Willd.) DC., 36. Mitracarpus hirtus (L.) DC., 37. Axonopus compressus (Sw.) P.Beauv., 38. Saccharum spontaneum L., 39.A PINE APPLE garden of BIDHAN-NAGAR, 40.A WEEDY PINE APPLE GARDEN OF RAJGANJ

41. Oxalis corniculata L., 42. Centella asiatica (L.) Urb., 43. Stellaria media (L.) Vill., 44. Laphangium luteoalbum (L.) Tzvelev, 45. Oxalis debilis var. corymbosa (DC.) Lourteig, 46. Mecardonia procumbens (Mill.) Small, 47. Ageratum houstonianum Mill., 48. Solanum americanum Mill., 49. Chenopodium album L., 50. Scoparia dulcis L., 51. Alternanthera sessilis (L.)R. Brown ex de Candolle, 52. Acmella calva (DC.) R.K.Jansen, 53. Rorippa indica (L.) Hiern, 54. Rumex maritimus L., 55. Dentella repens (L.) J.R.Forst. & G.Forst., 56. Ipomoea aquatica Forsskål, 57. Drymaria cordata (L.) Willd. ex Schult, 58. Physalis minima L., 59.A PINE-APPLE GARDEN OF CHOPRA (ISLAMPUR), 60.A PINE-APPLE GARDEN OF CHENGMARI (KUMARGRAM)

REFERENCES

- 1. Kasara PK, Mohammed S, Chawan DD, Sen DN. (1998).Weeds of Indian Desert and their chemical control. *Indian Journal of Environmental Sciences.*, 2(1): 23 27.
- 2. Frick B, Thomas AG. (1992).Weed surveys in different tillage systems in southwestern Ontario field crops. *Canadian Journal of Plant Science*, 722: 1337-1347.
- 3. Thompson K, Bakker J and Bekker RM.(1997). *The soil seed banks of North West Europe: methodology, density and longevity*. Cambridge University Press, Cambridge.
- 4. Honnay O, Verheyen K, Butaye J, Jacquemyn H, Bossuyt B and Hermy M. (2002). Possible effects of climate change and habitat fragmentation on the range of forest plant species. *Ecology Letters*, 5, 525–530.
- 5. Chen S, Shu Z, Kuan CS and Tang CH. (2011).Current situation of pineapple production in Chinese Taipei. Proc. *Seventh Int. Pineapple Symp.*, 902: 63–68.
- 6. Fakayode SB, Rahji MAY., Adeniyi ST. (2012). Economic analysis of risks in fruit and vegetable farming in Osun state, Nigeria. *Bangladesh J. Agril. Res.* 37(3): 473-491.
- 7. Gogoi M.(1997). Adoption behaviour of pineapple growers in Kamrup district of Assam. Journal of the Agricultural Science Society of North East India,10:290 292.
- 8. Hepton A.(2003).Cultural system. In *The Pineapple; Botany, Production and Uses*(Barthomew, DP, Paull RE, Rohrbach KG. eds.), 109-142. CABI Publishing. Oxon, UK.
- 9. Mukherjee PK, Rahaman S, Maity K and Sinha B. (2012). Weed management practices in potato (Solanum tuberosum L.). *J. Crop Weed.*, 8: 178-80.

- 10. Prain D. (1903). Bengal Plants I-II., Botanical Survey of India, Kolkata.
- 11. Phillips EA. (1959). *Methods of Vegetation Study*. Henry Holt and Company.
- 12. Shannon CE and Wiener W. (1963). The Mathematical theory of Communication, University Illinois Press, Urban.
- 13. Simpson EH. (1949). Measurement of Diversity, Nature. 163: 688.
- 14. Pielou EC. (1966). Species Diversity and pattern diversity of in the study of Ecological Succession, *Jour. Of theoretical Biology*, 10: 370-383.
- 15. Goodwin MS, Morrison IN and Thomas AG.(1986). A weed survey of pedigreed alfalfa seed fields in Manitoba. *Can. J. Plant Sci.*, 66: 413-416.
- 16. Honnay O,Degroote B and Hermy M. (1998). Ancient-forest plants species in Western Belgium: a species list and possible ecological mechanisms. *Belgian Journal of Botany*, 130, 139-154.
- 17. Jain SK and Rao RR.1978. *Hand book of field and Herbarium methods*. Today and Tomorrow Printers and Publishers. New Delhi,33-58.
- 18. Kabir MH, Bari MN, Haque MM, Ahmed GJU and Islam AJMS. 2008.Effect of water managementand weed control treatments on the performance of transplanted aman rice", *Bangladesh J. Agri. Res.*, 33(3):399-408.
- 19. Kundu R, Bera PS and Brahmachari K. (2009). Effect of different weed management practices in summer mungbean (Vigna radiata L.) under new alluvial zone of West Bengal. *J. Crop Weed.*, 5:117-21.
- 20. Mahmoodi S and Rahimi A. (2009).Estimation of critical period of weed control in corn in Iran. *Weed Acad. Sci.*, 49: 67-72.
- 21. Minbashi M, Baghestanii MA, Rahimian H. (2008). Introducing abundance index for assessing weed flora in survey studies. *Weed Biology and Management*, 8: 172 180.
- 22. Oudhia P and Dixit A.(1994). Weeds in Ambikapur region (Madhya Pradesh) and their traditional use. *Weed News*, 1(2): 19-21.
- 23. Pandey J and Mishra BN. (2002). Effects of weed management practices in ricewheat- mugbean cropping system on weeds and cropping system. *Ann. Of Agri. Res.* 23(4): 646-650.
- 24. Prayaga Murty P and Venkaiah M. (2011). Biodiversity of Weed Species in Crop Fields of North Coastal Andhra Pradesh, India. Indian J. Fund. Appl. Life Sci., 1: 59-67.
- 25. Roberts HA and Chancellor RJ.(1982).*Weed Control Hand Book*: Principles. Science Publishers, Inc, Piymouth, UK, Chapter I,1-30.
- 26. Sakimura, K. (1966). A brief enumeration of pineapple insects in Hawaii. In XI Pacific Science Congress, 1-7.
- 27. Samad MA,Rahman MM,Hossain AKMM,Rahman MS and Rahman SM. (2008). Allelopathic Effects Of Five Selected Weed Species On Seed Germination And Seedling Growth Of Corn. *J.Soil.Nature*. 2 (2):13-18.
- 28. Sema A. (2011). Pineapple Cultivation in North East India a prospective venture. ISHS Acta Hortic., 902: 69–78.
- 29. Shetty SVR, Gill HS and Brar LS.(1975). Weed flora of Rice (*Oryza sativa* L.) in Punjab. *Journal of Research, Punjab Agricultural University*. 12: 43-51.
- 30. Shroeder D, Muller H and Stinson CSA.(1993). A European weed survey in 10 major crop systems to identify targets for biological control. *Weed Research*. 33, 449 458.
- 31. Sidhu BS and Beri V. (1989). Effect of crop residue management on the yield of different crops and on soil properties. *Biol. Wastes.*, 27:15-27.
- 32. Singh DD.(2003).Management of crop residue in summer rice and its effect on the soil properties and crop yield. *Crop Res.*, 25: 191-193.
- 33. Tijani AA,Ayanwale AOS,Baruwa OI. (2010) .Profitability and constraints of tomato production under tropical conditions. *International Journal of Vegetable Science*.16(2): 128-133.
- 34. Tursun N.2002. Determination of weeds in wheat fields in Kahramanmaras, Turkey. *Turkiye Herboloji Dergisi*. 5(1): 1-11.
- 35. Thomas AG. 1985. Weed survey system used in Saskatchewan for cereal and oilseed crops. *Weed Science*. 33: 34-43.
- 36. Thomas AG. 1991. Floristic composition and relative abundance of weeds in annual crops of Manitoba. *Canadian Journal of Plant Science*.71: 831-839.
- 37. Abdullah H and Atan RM. 1983. The development of black heart disease in Mauritius pineapple (Ananas comosus cv. Mauritius) during storage at lower temperatures. *Mardi. Res. Bull.*, 11: 309–319.
- 38. Ahmad S. 1992. Preliminary studies on the weeds of wheat fields of Babri Banda, Kohat District, NWFP. *Pakistan Journal Weed Science Research*, 5: 36-40.
- 39. Anderson WP. 1983. Weed Science: Principles. 2nd edition, West Publishing Co., St. Paul MN.
- 40. Bor NL.(1960). The Grasses of Burma, Ceylon, India and Pakistan. Pergmon Press, Oxford.
- 41. Chandra Singh DJ and Narayana Rao K. (1973). Weed flora of Andhra Pradesh. PANS, 19: 223-229.
- 42. Chopra NK, Sinha JP, Chopra KB. (2002). Effect of seedling age on seed yield and its quality in paddy CV, Pusa 44. *Seed Research*, 30(1): 79-81.
- 43. Dangwal LR, Singh A, Singh T, Sharma A, Sharma C. (2010). Effect of weeds on the yield of wheat crop in Tehsil Nowshera. *Journal of American Science*, 6: 405-407.
- 44. Dhole JA, Lone KD, Dhole NA and Bodke SS. (2013). Studies on weed diversity of Wheat (*Triticum aestivum* L.) crop fields of Marathwada Region, *Int.J.Curr.Microbiol.App.Sci* 2(6):293-298

Copyright: © **2017 Society of Education**. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.