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ABSTRACT 
Inflammatory mediators known as cytokines (class II) which comprised of Interferons (IFNs) play vital roles in host 
immune defense and the discovery of IFNs is considered as a pioneer in the field of immunology. Fish type I IFNs may 
signal to the downstream receptors in a same way as in mammals. In zebrafish, two group IFNs such as IFN1/4 mediated 
signaling through CRFB1 and CRFB5 receptor complex whereas IFN2/3signal through CRFB2 and CRFB5 complex. Three 
families of pattern recognition receptors (PRRs) which includes retinoic acid-inducible gene I (RIG-I)-like receptors 
(RLRs), Toll-like receptors (TLRs), and cytosolic DNA sensors, are required in the type I IFN response in mammals. 
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INTRODUCTION 
Discovery of Interferons (IFNs) play an essential role in the field of biomedicine especially in 
immunological studies for the past sixty years. Inflammatory mediators known as cytokines (class II) 
which comprised ofIFNs play vital roles in host immune defense[1], especially against viruses[2]. IFNs are 
categorised in to three types as type (I, II and III) based on their similarity in sequence, biological function 
and its organisation of genome[2]. Almost all nucleated cells respond to type I IFNs[3] [4].  This review 
attempts to summarize the recent discoveries on the type I IFNs systems in fish, which is regulated by 
RLRs and TLRs. 
 
DISCOVERY AND CLASSIFICATION OF TYPE I IFNS 
In 2003, three separate groups worked in zebrafish[5], green spotted pufferfish[6] and Atlantic salmon 
[7], identified first fish IFN gene. Many copies of type I IFN gene is present in fish similar to other 
vertebrate species based on their genome linkage, so the gene copy number varied from four in zebrafish 
to eleven in atlantic salmon[8] [9] and appear to exist in all fish species[10] [11]. Type I IFNs in fish was 
originally grouped into two types based on the number of cysteine residues (required indisulfide bond 
formation) as group I – contains two cysteine and group II – contains four cysteine residues[12]. Based on 
the order of discovery and location of chromosome, type I IFN gene copies are depicted by arabic 
numerals for instance, in zebrafish IFNs genes (four types IFNs 1-4) are classified into group I comprised 
of IFNs 1 and IFNs 4 whereas group II comprised of IFNs 2 and IFNs 3[5] [8] [13]. Complex type I IFNs 
with subsets a, b, c, d, e and f are distinguished in salmonids[14] [9]. IFNs subtype h is the newly added 
and identified in perciformes [15] [16] [17]. 
 
RECEPTORS OF TYPE I IFN MEDIATED SIGNALING PATHWAY 
Type I IFN-mediated signalling pathway initiated with the interaction between type I IFNs and their 
receptors IFNAR1 and IFNAR2 (heterodimeric receptor complex) in mammals[1]. Researchers mainly 
immunologists suggested that the two receptors (IFNAR1 and IFNAR2) pertain to the class II cytokine 
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receptor family, which is known as cytokine receptor family B (CRFB) in fish[6] [18]. There are 17 CRFB 
members are present in zebrafish and pufferfish revealed in genome-wide sequencing. CRFB1 and CRFB2 
showed homology to mammalian IFNAR2 whereas CRFB5 is homologue to mammalian IFNAR1[18]. In 
zebrafish, two group IFNs such as IFN1(IFNa) and IFN4 (IFNd) mediated signaling through CRFB1 and 
CRFB5 receptor complex whereas IFN2/3 (IFNc) signal through CRFB2 and CRFB5 complex[8] [19]. 
 
REGULATION OF TYPE I IFN-MEDIATED SIGNALING PATHWAY 
In mammals, interaction between type I IFNs and their receptors stimulates the binding of tyrosine 
kinase 2 (TYK2) to IFNAR1 and Janus kinase 1 (JAK1) to IFNAR2 mediated through JAK-STAT 
pathway[20]. Phosphorylation of STAT1 and STAT2 (Signal Transducers and Activators of Transcription) 
by the aforementioned kinases are dimerized and put together with IFN regulatory factor (IRF) 9 to form 
an IFN stimulated gene factor 3 complex (ISGF3). Then the translocation of this trimolecular complex to 
the nucleus activate the transcription by binding to IFN-stimulated response elements (ISREs)[21](Figure 
1). Copious immunogenetics studies revealed components of JAK-STAT pathway such as TYK2, JAK1, 
STAT1, STAT2 and IRF9, also exist in fish[22] [23][24]. 
 

Table 1. Conservation of JAK- STAT mechanism 
Species IFNAR1 

IFNAR2 
TYK1 
TYK2 

References 

Mammals Absence of enzymatic 
activity 

Presence of Kinase 
activity 

[25] 

Fish Absence of enzymatic 
activity 

Presence of Kinase 
activity (Atlantic salmon 
TYK2) 

[26] 

Grass carp Absence of enzymatic 
activity 

Presence of Kinase 
activity (CRFB1 and 
CRFB5) 

[27] 

 
Interestingly, Fish type I IFNs may signal to the downstream receptors in a same way as in mammals. Two 
STAT1 genes (STAT1a and STAT1b) in zebrafish show similarity with human STAT genes. All five 
domains of human STAT1a is identified in zebrafish STAT1a at the same time, lack of C-terminal 
transcriptional activation domain is observed in both human and zebrafish STAT1b[28]. Zebrafish 
STAT1a is able to rescue IFN-mediated growth suppression in a STAT1-deficient human cell line, thus 
play an important role in type I IFN mediated signalling[29] [30].In congruent with this findings, 
phosphorylation and translocation of Atlantic salmon STAT1a in to nucleus was observed with 
recombinant IFNa1treatement[31]. In orange-spotted grouper, overexpression of STAT1a show antiviral 
activity against iridovirus and nodavirus by upregulating the ISGs expression[30].However, gibel carp 
STAT1(resembles like zebrafish and human STAT1b) induce ISG and inhibit viral infection[32]. Invitro 
studies in mandarin fish[16]and Co-IP assay in salmon[33]revealed that the ISGF3 complex (STAT1, 
STAT2 and IRF9) conserved in fish. At the same time, studies show that fish IRF9 is essential for the type I 
IFN-mediated signalling[34][35][36].  
Numerous studies suggested that three families of pattern recognition receptors (PRRs) which includes 
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), Toll-like receptors (TLRs), and cytosolic DNA 
sensors, are required in the type I IFN response in mammals[37]and in fish[38]. 
 
RLR-MEDIATED TYPE I IFN RESPONSE 
Family of cytosolic receptors that is RLRs which recognize viral RNAs with three members, including RIG-
I, melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 
(LGP2)[39]and the downstream molecules mitochondrial antiviral signalling protein (MAVS), and TANK 
binding kinase 1 (TBK1) are found conserved in fish.Upon the recognition of dsRNA from viruses, RLR 
components RIG-I/MDA5 recruits MAVS which then become associated with TRAF3 and TBK1, leading to 
the phosphorylation and activation of IRF3/IRF7 to elicit type I IFN response(Figure 1). RIG-I seems to be 
lost in fish of Acanthopterygii whereas MDA5 and LGP2 appear to exist in all fish species[40] [41]. 
Notwithstanding, it remains to be determined whether there are multicopy genes STAT1 and STAT2 in a 
wide range of fish taxa. In addition, investigating the functional similarity and divergence of STAT1 and 
STAT2 fish multicopy genes in Type IFN signalling will be interesting.However, there are still two 
important and intriguing questions to be answered with regard to fish RLR-mediated type IFN response. 
First, since RIG-I appears to be lost in certain groups of fish species[40][41], clarifying the mechanism for 
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compensating for RIG-I deficiency in these species would be interesting. Second, much more research is 
needed to fully elucidate the dual roles of Type I IFN-mediated antiviral response fish LGP2 and to 
understand the factors that influence the functional switch of LGP2 in fish[42]. 
 
TLR-MEDIATED TYPE I IFN RESPONSE 
Type I integral proteins also known as TLRs comprising an ectodomain containing ligand-rich repeats 
(LRRs), a transmembrane region and cytosolic Toll-IL-1 receptor (TIR) domains that mediate 
downstream signaling pathways[43]. TLR3, TLR19 and TLR22 are mainly involved in the activation of 
type I IFN response in fish[44] [45]which comprises a larger TLR collection, which shows similarity to 
mammalian TLRs and non-mammalian TLRs [46]. Among the three TLRs in fish, TLR3 is localized in 
endoplasmic reticulum and recognizes short dsRNA, TLR22 is located particularly in plasma membrane 
and recognizes long dsRNA and recruit TRIF to elicit type I IFN response [47] [48](Figure 1). The studies 
from Takifugurubripes commonly called fugu/puffer showed the ligand recognition and type I IFN-
inducing activity of fish TLR3 and TLR22 whereas TLR19 response identified in grass carp. 
In other fish species, the functional properties of these TLRs remain to be further characterized. 
Furthermore, although fish TLR9 may bind CpG-containing DNA as in mammals [49][50], it remains to be 
shown whether it can activate Type I IFN production. Future studies are also required to determine 
whether ssRNA can be conservatively recognized by fish TLR7 and TLR8 and to trigger type IFN 
response[42]. 
 

 
igure 1: Signalling pathway model for type I IFNs in fish. Two groups of IFNs interact with its common 
receptor CRFB5 and the two different receptors CRFB1 and CRFB2. Upon ligand – receptor interaction 
TYK2 and JAK1 are recruited and activated, leads to the phosphorylation of STAT1 and STAT2 which 
become dimerized and form a trimolecular complex with ISGF3, ultimately translocates to the nucleus 
and binds to ISREs, thus activating the transcription. Upon the recognition of dsRNA from viruses, RLR 
components RIG-I/MDA5 recruits MAVS which then become associated with TRAF3 and TBK1, whereas 
TLR3, TLR19 and TLR22 which recruit TRIF and TBK1 leading to the phosphorylation and activation of 
IRF3/IRF7to elicit type I IFN response.  
 
CONCLUSIONS AND FUTURE PERSPECTIVE 
First, since RIG-I appears to be lost in certain groups of fish species, it would be interesting to clarify the 
mechanism in these species to compensate for the RIG-I deficiency. Second, much more research is 
needed to fully elucidate the dual roles of Type I IFN-mediated antiviral response of fish LGP2 and the 
factors influencing the functional switch of LGP2 in fish. Future studies are also needed to determine 
whether fish TLR7 and TLR8 can conservatively recognize ssRNA and trigger the response of type I IFN. 
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