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ABSTRACT 
Bothrops asper is a one of the highest poisonous snake species family of viperidae. This snake venom toxins are proteins. 
It causes severe tissue necrosis in human. These Biomolecule contain some pathologic effects such as bleeding, 
inflammation, cardio toxic, cytotoxic, hemorrhage, myonecrosis, dernamonicrosis, blistering, and edema tissue damaging 
activities. Most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently 
developed for these toxins some computational technique used to Biomolecule properties are analyzed.  The crystal 
structure of snake venom metalloproteinase complex structure (2W14) retrieved from protein databank. Dynomics 1.0 is 
an online tool used to the protein elastic network models was predicted. One is Gaussian network model and another one 
is anisotropic network model.  Those protein network (2W14) models construct and analysis the protein functional sites, 
residues, effectors, sensors, mean square fluctuation and B factors domain separation, domain movement, biological 
assemblies, homologous structure, sequence conservation, evolution properties, drug ability, inter node distance 
fluctuation, correlation, deformation energy all properties are calculated. The metalloproteinase protein contains 
Metzincins this drug cure various diseases in human kind. The metalloproteinase inhibitor main challenges for clinical 
studies. The snake bite pathological effects are caused few inhibitors are try to clinical trials. The (2W14) inhibitor was 
try to structurally whole properties are analyzed and they further research studies will focus on drug designing and 
molecular modeling areas.  
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INTRODUCTION 
Snake venom is combined of peptides and mixture of protein. It contains several medical and therapeutic 
applications [1, 2,]. In modern science different types of molecules are derived from snake toxins are used 
in clinical development [3, 4, 5]. Mostly snake venom toxins are proteins. The bioactive diverse such as 
various pathologic effects are caused in human kind [6, 7, 8, 9, 10]. In modern bioinformatics study online 
resources of tools have been used to the molecules are identified and the targets are predicted and 
properties are analyzed [11, 12, 13, 14]. 
Highly venomous pit viber species of Bothrops asper mainly found in South America and Mexico [15, 16, 
17]. It is a very rare species contain high toxic effects in the venom [18, 19]. Computational and Insilco 
method used to the molecule structure was predicted and deposited in protein databank (PDB-High 
resolution crystal structure of snake venom metalloproteinase with peptidomimetric insights into 
inhibitor (2WI4).The molecular target was applied to the drug target and further molecular docking 
studies[20,21,22,23,24]. 
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Our present work is carry on the molecule (2WI4) target was constructed by elastic network models 
(ENM) and combined with Gaussian network model (GNM) and anisotropic network model (ANM).The 
Biomolecule protein dynamics and functions whole properties are analyzed in the Dynamics 1.0 software. 
Material and methodology 
Protein retrived NCBI 
The Biomolecule High resolution crystal structure of snake venom metalloproteinase with 
peptidomimetric insights into inhibitor (2WI4) Bap1 complex insights into inhibitor binding protein PDB 
coordinate file format was retrived from protein data bank. 
Network prediction in dynamics 
Dynomics 1.0 online access tool contain Elastic network models (ENM) based predict two different 
network one is Gaussian network model (GNM) and anisotropic network model (ANM).These two 
networks are used to construct the protein was further analyzed via properties. 
Query dynamics 
Enter the PDB 2WI4 and click submit button a query with default option. The biological assembly 
structure will be selected. Then advance option method used to select the network models. 
Protein dynamics 
The Biomolecule (2WI4) properties of molecular fluctuation, Mean square fluctuation of residues, 
Residue cross correlation between residue fluctuation, Inter residue map and Gaussian network model 
(GNM) mode spectrums are analyzed. 
Prediction of functional site based protein dynamics 
The protein Biomolecule (2WI4) functional site based the domain are separated. Protein functional site 
sensor effectors, signaling communication sites are predicted. 
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RESULTS 
Molecular motion 

 
Fig 1: shows that a snapshot from molecular motions webpage generated by ENM 1.0.A snapshot from the 
animation generated for 2WI4.slowest mode shown in figure. The protein is in ENM representation color 
coded based on the size of motion (red-most mobile, blue-most rigid) user download full atomic 
conformers after selecting the RMSD from the pdb structure. 
Mean square fluctuation of residues 

 
Fig 2: shows that Correlation between observed and predicted fluctuation Fig a and b.In this 3D Jsmol 
window the structure was modeled as cartoon and colouir coded by GNM defined theoretical 
fluctuation(left) X-ray experimental factor (right).The colors are defined by the mobility of the 
residues/nodes. Rigid residues are blue and mobile residues are red. 
Theoretical and experimental B factors Plotted 

 
Fig 3: shows that The 2 d profiles of B-factor (y) as a function of residue (x) are plotted using the 
interactive graph. The plot will display the plotted series with Theoretical chain A, ASER156, (11.594) 
residue information corresponding B factors. 
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Nodes selection 

 
Fig 4: shows that the 3D structure of 2WI4 shows in Jsmol window is colour coded based on the mobility 
of the residues in particular node. The colour spectrum varies from blue (most rigid) to white to red 
(most mobile). 
Graph mode/Residue index graph 

 
Fig 5: shows that the 2D plots are scaled by the inverse Eigen values of the Kirchhoff matrix (T).The graph 
shows that residue index(x axis),and mode shapes(y axis).The slow mode chain A-SER156,0.094. 
The cross correlation between residue fluctuation 

 
Fig 6: The cross correlation map shows that any range of nodes. The node was selected at the residue 
point A(SER175). 
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Fig 7: The static map will display a cross correlations are calculated. The minimal residue index (i) and (j). 
Can be changed as map size. The maximal size indices are indexes values are C180, 181=CCA, ASP180, A: 
CYS 181=181=0.46). 
 
Inter residue contact map 

 
Fig 8: shows that the GNM representing the structure is displayed spring and bead representation on 
left.2D inter residue connectivity contact map is shown in right. Each sphere representsa node and each 
line between the nodes represents a spring connectivity interaction between the pair of interest. Nodes 
are connected if they are located with the cut off distance. The topology of the network can be viewed in 
2D connectivity map. Each dots are represents a spring connection between residue I and j index. 
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Properties of GNM mode of spectrum 

 
Fig 9: The motion of frequency GNM have been evaluated 1/Lambda (reciprocals of Eigen value).The 
degree of collectivity of a given node measures structural element move together in particular node. Here 
high degree of collectivity means cooperative mode (mode 8 24.397) a large portion of the structure. 
Domain separation 

 
Figure 10: The 3D Jsmol shows that dynamically coupled interfacial wireframe are in fig. Domain 
separation dynamics results show that residue index(x axis), Eigen vector(y axis) residues act as h9inge 
in the movement of the molecule. Chain A, mode: 1, A: PHE43, 0.040.  
Potential functional site 

 
Fig 11: The 3D structure shows that (2WI4) functional sites are A: MET140, A: GLU143, AA: GLY124, A: 
ALA137, A; ALA195, A: TRY125, A; SER130 
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Sensor and effectors 

 
Fig 12: sensor (left) effectors (Right) two ribbon structures (2WI4) residues are highlighted in the fig. 

 
Fig 13: PRS map strong responses are shown in dark red. The peaks along the curves indicate the residue 
that can potentially serve as sensor and effectors perturbation response. 
Signal communication sites 

 
Fig 14: Signal communication and receiving networks reflect that propensity of residues to send signals 
(left) receiving signals (right). 
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Fig15 The hitting map shows that the signal communication and receiving in particular site was 
calculated the hitting time ratio distance between residues and the equilibrium. 
 
DISCUSSION AND CONCLUSION 
Bothropsasper toxins Biomolecule structure was deposited and retrived form protein data bank. The X-
ray crystallographic structure properties are analyzed in Dynomicssoftware. They computational 
techniques used to the networks are predicted in various model and the properties are analyzed. 
Computational biology and chemistry used to the Biomolecule initial characterization and discovery are 
studied. The three dimensional structure of the protein was targeted for further clinical studies. The 
metalloproteinase protein contains Metzincins this drug cure various diseases in human kind. The 
metalloproteinase inhibitor main challenges for clinical studies. The snake bite pathological effects are 
caused few inhibitors are try to clinical trials. The Dynomics software analyzed the metalloproteinase 
Allosteric behavior, intermolecular interactions, different oligomerization state assembles. They resource 
provide an efficient means of harnessing the rapidly accumulating structural proteome data to provide 
user with the broad range of outputs that may guide establishing molecule basis of functional interaction. 
The (2W14) inhibitor was try to structurally whole properties are analyzed and they further research 
studies will focus on drug designing and molecular modeling areas.  
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