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ABSTRACT 
The goal of this research was to quantify rainfall interception (I) in a mature semirid Cupressus arizonica stand 
afforested in the Chitgar Forest Park near Tehran city, Iran. Measurements of gross precipitation (GR) and through fall 
(TF) were recorded on an event basis from September 2011 to April 2012. For the measurement period, GR totaled 218.1 
mm and I totaled 73.1 mm. I was calculated as the difference between GR and TF. On the event-based scale, the ratio of 
I:GR ranged between 1.3% and 97.2%, and averaged 36.8%. There was a strong logarithmic correlation between I:GR  
and GR (R2 = 0.650; P value ≤ 0.01). As the amount of rainfall events increased, I:GR decreased. The results indicate that 
intercepted rainfall represents a considerable portion of GR in P. eldarica afforested regions of the semiarid climate zone 
of Iran. 
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INTRODUCTION 
Rainfall interception loss (I) is the fraction of gross rainfall (GR) that is intercepted, stored and 
subsequently evaporated from the leaves, branches and stems of vegetation. Therefore, quantifying the 
magnitude of I is vital in semiarid and arid regions where soil moisture is a limiting factor affecting plant 
growth and productivity [7]. 
Throughfall (TF) is the portion of GR that reaches the forest floor [14],  [43]. Stemfall (SF) is GR that 
reaches the ground by flowing down stems/trunks. I is estimated using the difference between GR and the 
sum of throughfall (TF) and stemflow (SF) [42], [43].  
For the same vegetation type, the equations frequently differed because of the unique characteristics of 
each forest stand [12].  Awareness about the amount of rainfall intercepted by different tree species will 
help managers choose the desirable species. To our knowledge, a comprehensive investigation on the 
impact of C. arizonica on I has not been reported for forests in Iran, nor in other countries in the region, 
despite the widespread use of this species in afforestation efforts. Therefore, the objective of this paper is 
to quantify how TF and I are partitioned in a planted C .arizonica forest located in a semiarid climate zone 
of Iran. 
 
MATERIALS AND METHODS 
Site Description 
The study occurred in a nearly closed canopied, even-aged C. arizonica afforestation located in the Chitgar 
Forest Park of Tehran, Iran. TF Measurements were made in a 500 m2 plot (35˚10´ N, 51˚10´ E, and 1250 
m a.s.l.). Tree density was 1050 trees ha-1 and the total basal area was 60.5 m2 ha-1. Mean tree height and 
diameter at breast height (DBH) were 9.1 m and 27 cm, respectively. Measurements were performed 
from September 2011 to April 2012.  
Field Measurements 
GR was measured by 10 rain-gauges that were 9 cm in diameter and 20 cm in height. The quantity of 
water in the collectors was measured manually using a graduated cylinder with an accuracy of 1 ml. The 
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average from the 10 rain-gauges was used to estimate GR. Rainfall events were defined as separate rain 
events as long as there was at least 2 h without rain. In this dry climate, 2 h was assumed to be sufficient 
for the canopy to completely dry [7]. TF was measured using 50 rain-gauges of the same design as the 
rain-gauges used to quantify GR. TF volume was measured at the same time GR was measured. In the 
present study, SF was not directly measured because C. arizonica has rough bark and a canopy structure 
that is similar to other species with low stemflow [22, 12].  
 
RESULTS 
From September 2011 to April 2012, 218.1 mm of rain fell in 41 rainfall events. Cumulative GR ranged 
from 0.2 mm to 13.5 mm and mean GR depth per event was 5.3 mm. Of the 41 rainfall events recorded 
during the measurement period, 144.9 mm, or 66.5% of the cumulative GR reached the forest floor as TF. 
Mean TF was 3.5 mm or 63.2% of GR.  
Rainfall interception loss (I) totaled 73.1 mm, or 33.5% of total GR for the study period. The percentage 
lost to TF depended on storm amount, with the percentage varying from 97.2% of GR for larger rainfall 
events (14.4 mm) to 1.3% of GR (0.2 mm). 
The contribution of I to GR (relative I or I: GR) was correlated with GR (Fig 1). The mean values of I:GR 
showed a decreasing trend, with ratio decreasing as GR increased. A negative logarithmic significant 
relationship (R2 = 0.650; P value ≤ 0.01) was found between I:GR and GR.  

 
Fig 1. Scatter plots of percent of relative interception (I:GR)% vs. gross rainfall (GR) for the Cupressus 
arizonica stand. 

 
DISCUSSION 
A review of the literature on rainfall partitioning in various coniferous stands, indicates that the values for 
TF:GR and I:GR obtained in the present study differed slightly with those measured in other needle-leaves 
forests (Table 1). Llorens et al. (1997) reported that the average values of TF:GR and I:GR in a Pinus 
sylvestris forest in Eastern Pyrenees, Spain, were 75% and 24%, respectively. Mahendrappa [42]  
reported TF and I for a Pinus strobus plantation in Canada to be 65% and 31% of annual GR, respectively. 
In Portugal, the measured value of TF in a Pinus pinaster forest was 83% of GR during the two years of 
measurement [55].  It is noteworthy that value of I:GR obtained in our study (37%) was on the high end of 
the 20% to 40% measured by others in needle-leaved evergreen forests [23],  [67].  The partitioning of 
rainfall into TF and I in forest ecosystems has been demonstrated to be a function of incident rainfall 
characteristics (amount, intensity, duration, and temporal distribution of rainfall events) [10],  [66],  [24],  
[33],  [35],  [42],  meteorological conditions (air temperature, relative humidity, wind speed, and wind 
direction) [9] and forest structure (species composition, stand age, basal area, stand density and canopy 
morphology and architecture) [28],  [66],  [35],  [7], [44],  [53],  [48],  [63].  Given the dry nature of this 
region, it is likely that the differences in rainfall partitioning reported by other researchers were due, in 
part, to differences in the above mentioned factors.  
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Table 2. A review of measured values of relative throughfall (TF:GR), relative rainfall interception (I:GR) 
as well as relative stemflow (SF:GR) obtained from various researches carried out on different species of 
pine (stand). TF, SF, I, and GR are referred to throughfall, stemflow, rainfall interception, and gross 
rainfall, respectively. 

Tree Species I:GR TF:GR SF:GR Tree density 
(Stem ha-1) 

References 

Pinus pinaster 0.171 0.826 0.003 312 Valente et al. [62] 
Pinus radiata 0.183 0.728 0.089 1708 Crockford and Richardson [9] 

Pinus 
wallichiana 

0.21 0.763 0.027 1200 Singh [58] 

Pinus densiflora 0.14 0.83 0.03 1575 Mitsudera et al. [44] 

Pinus radiata 0.30 ---- ---- 450 Kelliher et al. [31] 

Pinus sylvestris 0.32 0.38-0.53 0.15-0.30 4600 Rutter (1963) 

Pinus 
massoniana 

0.272 0.704 0.024 2628 Cao et al. [5] 

Pinus sylvestris 0.24 0.747 0.013 2400 Llorens et al. [38] 

Pinus radiata 0.265 ---- ---- 1493 Pook et al. [48] 

Pinus nigra 0.35 0.65 ---- 600 Rutter et al. [63] 

Pinus sylvestris 0.424 0.576 ---- 1870 Gash et al. [16] 

Pinus strobus 0.307 0.65 0.053 ---- Mahendrappa [42] 

Pinus resinosa 0.283 0.69 0.007 ---- Mahendrappa [42] 

Pinus pinaster 0.126- 
0.21 

0.76-0.83 0.01-0.06 800 Loustau et al. [40] 

Pinus pinaster 0.125 0.875 ---- 430 Lankreijer et al. [33] 

 
The size of GR had a major impact on the partitioning of rainfall into TF and I for the P. eldarica 
afforestation in this study. As the size of GR increased, the ratio of I to GR (I:GR) decreased. A part of the 
difference in interception loss between this study and others in the literature may have resulted from 
different storm sizes. However, while TF and GR were well correlated, the lowest TF values was not 
synchronized with the lowest values of GR (0.22), thereby suggesting that the climatic factors also played 
a very important role in the rainfall partitioning. 

CONCLUSION 
The study occurred in a Cupressus arizonica afforestation in semarid climate zone of Iran. It was observed 
that rainfall partitioning into TF and I was strongly affected by the size of GR; with the ratio of I:GR 
declining as GR increased.   
This research is the first to document rainfall partitioning in C. arizonica afforestation. However, climatic 
factors, such as wind speed and direction, air temperature and relative humidity, rainfall characteristics, 
rainfall duration, rainfall intensity, as well as vegetative factors including leaf area index (LAI), canopy 
architecture, gap fraction and stand density should be considered when rainfall partitioning in 
afforestations in semiarid climate zone. In the semiarid climate zone of Iran, plant growth and 
productivity is strongly affected by water availability. Therefore, I should be considered when selecting 
species for afforestation projects in the semi-arid climate regions as it can be significant.  
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