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ABSTRACT 

Drought stress is an important environmental factor inhibiting plant growth. The examination of physiological reaction 
of different species to the drought stress is useful to recognize effective mechanisms in drought tolerance and choosing 
the suitable species for plantation in dry lands. In order to determine the resistance of Celtis caucasica and understand 
the physiological mechanisms in response to the drought condition, an experiment was designed in a completely 
randomized block with one factor (irrigation), at five levels (1, 3, 5, 7, and 9 days) with five replications chlorophyll 
fluorescence parameters (Fv/Fm, Fm and F0) and pigments content (total chlorophyll, chlorophyll a, and chlorophyll b) 
of leaves. The results indicated that drought stress induced a significant reduction at five percent level in maximum 
photochemical efficiency of photosystem II (Fv/Fm) and maximum fluorescence (Fm) while the minimum fluorescence 
(F0) was not significantly affected by drought. With increasing the intensity of drought, chlorophyll content in leaves was 
increased. Maintaining the leaf chlorophyll content under stress conditions, is one of the physiological indicators of stress 
resistance concluding that C. caucasica would be one of the most suitable species for afforestation plans in arid and semi-
arid regions. 
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INTRODUCTION 
Drought stress is an important environmental factor that affects plants growth, productivity, 
photosynthesis and changes plants metabolism [23], [24]. Drought stress is one of the most important 
environmental inhibitor for photosynthesis via stomatal closure [13].In this condition, decreasing 
photosynthesis is related to disturbing the biochemical processes of the photosynthetic apparatus. 
Photosystem II is the most sensitive part of the photosynthetic systems and plays a critical role in plants 
reaction to environmental stresses [13]. Damage to photosystem II is frequently the first symptoms of 
stress in a leaf [23]. 
Plant physiologists have suggested chlorophyll fluorescence as a sensitive indicator of stress condition in 
plants. The measurement of chlorophyll fluorescence in natural environment is a useful technique to 
understand the tolerance of photosynthetic apparatus of the environmental stress [23].  This technique is 
nondestructive and can be just as operative as the gas exchange techniques to disclose differences 
between drought tolerant and susceptible species [25].  There have been many fluorescence parameters 
so that it is not possible to give an extensive review of all of these here. F0 (minimum fluorescence from 
dark adapted leaf is the level of fluorescence when primary quinine electron acceptors of PS II (QA) are 
maximally oxidized (PS II centers are open), Fm (Maximum fluorescence from dark adapted leaf is the 
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level of fluorescence when QA is maximally reduced (PSII centers are closed), Fv(variable fluorescence 
from dark adapted leaf shows the ability of PSII to perform primary photochemistry (photoreduction of 
QA) and Fv/Fm.The values of Fv/Fm in dark adapted leaves indicates the potential yield of the 
photochemical reacting in PSII used as a practical alternative to monitor the photosynthetic performance 
[15]. The optimal values of Fv/Fm in healthy leaves of most plant species are about 0.832 [6] and the lower 
values show the exposure of plants to stress. This is the consequence of photo damage to PSII reaction 
centers, and the progression of quenching process [23], [9].  Literature reviews show that there are 
differences between physiological responses of plants to drought stress. These differences are related to 
species type and to some extent, experimental conditions. In the present research, C.caucasica was 
employed to study the photosynthetic responses to the drought stress. It is commonly used as an urban 
tree because of its ability to withstand drought and tolerate in urban environments. The aims of this study 
were: (i) to evaluate the effect of drought stress on the chlorophyll fluorescence parameters (ii) to find 
the relationship between chlorophyll contents and drought tolerance in C. caucasica and, (iii) assessing 
the vitality of C.caucasica in different irrigation regimes for planting in semi-arid areas.  
 
MATERIAL AND METHODS 
Materials and Experimental design 
This study was conducted in the Alborz Research Station in southwest slope of Alborz mountain in Iran 
(latitude 35o 48´N, 50o 54´E and 1300 m a.s.l) with a semi-arid climate where means annual temperature 
and rainfall are 13.7 o C and 230 mm, respectively.  
The seeds were collected from 7km in the road of Chaloos-Nojan with elevation of 1450m and in April, 
2011, they were sawn in plastic pots (15×40 cm) containing an equal mixture (2:1:1) of clay, sand and 
organic fertilizer. Pots were irrigated every day for about one year. No artificial lighting was used in this 
study excluding natural light from the sun. Regular management was conducted until the seedlings were 
about 50 cm height. Twenty five seedlings were selected randomly and classified to five groups of 
treatments. Drought experiment started in August 2012. Measurements were performed on 1, 3, 5, 7 and 
9 days after drought. Soil was fully drenched before the experiment. 
Chlorophyll fluorescence 
Chlorophyll fluorescence was measured using a portable chlorophyll fluorometer (PAM 2500 
WalzGermany) on three fully expanded leaves of five pots per treatment. Leaves were adapted to 
darkness for 30 minutes by attaching light clips to the leaf surface. All measurements carried out every 
day, from 10 AM to 14 PM. 
Chlorophyll content 
To assess chlorophyll content, fresh and mature leaves (0.1g) were extracted with 10 ml of 80% acetone 
and centrifuged at 4000 rpm for 15 min. The absorbance was read spectrophotometric ally at 654 and 
663 nm and calculated for chlorophyll a, chlorophyll b, and total chlorophyll according to [3].  
Statistical Analysis  
The normality of data was assessed using the Kolmogorov-smirnov test and the homogeneity of variances 
was determined using the Leven’s test. The average of parameters was compared using Duncan or Games 
Howel test.Data analysis was performed using SPSS 17.0. 
 
RESULTS AND DISCUSSION 
Chlorophyll fluorescence  
As can be seen in Table 1, maximum photochemical efficiency of PSII (Fv/Fm) and maximum fluorescence 
(Fm) in C. caucasica decreased significantly after 5 days drought. During the experiment, the lowest 
amount of Fv/Fm reaching 0.254 after 9 days withholding water. 

  
Table 1. Fo, Fm and Fv/Fmvalues inC. caucasica L. under different watering regimes. Data were expressed as mean ± SE 

 F0 Fm Fv/Fm 
Treatment    

 Mean+SE Mean+SE Mean+SE 

Control 1.704±0.107 a 6.583±0.088 a 0.748±0.008 a 

3d 1.607±0.109 a 6.272±0.204 a 0.740±0.008 a 

5d 1.686±0.110 a 5.872±0.287 a 0.695±0.111 b 

7d 1.731±0.127 a 6.023±0.251 a 0.685±0.020a b 
9d 1.927±0.166 a 3.236±0.416 b 0.254±0.066 c 

Note: Data in the same column followed by different small letters are significantly different at 0.05 level of 
significance.  
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The amount of Fm in 9 days drought has been significant differences with other treatments with the 
measure of 3.236 (µmol m-2 s-1). The minimal fluorescence (F0) was constant throughout the entire course 
of the experiment. Most studies showed that under drought conditions, the reduction of photosynthesis 
associated with disorder in biochemical reactions[14]. Drought damages the reaction center of 
photosystem II [8], [9], [20]. Hence the reduction of the maximum photochemical efficiency of 
photosystem II (Fv/Fm) and fluorescence changes in the time interval is used as a criterion of tolerance 
and stress resistance[12]. We found out that the maximum photochemical efficiency of photosystem II 
(Fv/Fm) and maximum fluorescence (Fm) had a downward trend with increasing the drought stress. This 
is in agreement with [4] who reported the reduction of Fv/Fm and Fm in seedlings of Pinushalepensis, 
Quercuscoccifera and Quercus ilex. We also showed that C. caucasica had significant differences in the ratio 
of Fv/Fm since 5 days and in Fm since 9 days after drought. The high level of Fv/Fm and Fm indicated the 
high amount of photosynthesis. The Fv/Fm represents the electron transport capacity of photosystem II 
[10]. That has high correlation with quantum yield of net photosynthetic [2]. According to Alidib et al., [1] 
decrease of efficiency of photosystem II centers to consumption of photons, exhibited the measure of 
photo inhibition under drought stress conditions. The decrease in Fm revealed that the lower oxidation of 
QA under drought conditions and reduced photochemical reactions. 
The rapid changes in fluorescence that occur during the rapid induction to a peak have long been 
attractive for detecting differences in photosynthetic performance in plants. On immediate exposure to 
light, fluorescence rises to the minimum level of fluorescence, termed F0 level, which is the fluorescence 
level obtained when the PSII reaction centers are in the open state, i.e., capable of photochemistry since 
QA, the primary quinone acceptor of PSII, is maximally oxidized. The results indicated that the minimum 
fluorescence in C.caucasicawas not significantly affected by drought in different treatments. This result is 
in agreement with findings of [11] and [22]. Since F0 values are related to chlorophyll fluorescence of PSI 
receptors [2], [27] and considering that non-significant difference of F0 between irrigation regimes, it 
seems the receptors of chlorophylls had almost a similar efficiency between irrigation regimes.  
Chlorophyll content 
With the drought process, Chlorophyll a, Chlorophyll b, and total Chlorophyll in C. caucasica had 
significant upward trend. Chlorophyll a, Chlorophyll b, and total Chlorophyll in 9 days drought were 1.1, 
1.2, 1.2 times, respectively, in compare to that of the control. 
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Fig.1. Effects of different watering regimes on chlorophyll a, chlorophyll b, and total chlorophyll of C. 

caucasica leave. Values are mean ± SD and bars indicate standard error. 
 
Chloroplast pigments play an important role for the light absorption and conversion in the 
photosynthesis process. Generally in most plants the contents of photosynthetic pigments (chlorophyll) 
are reduced with increasing drought [7]. Research showed that the chlorophyll content in plants with low 
resistance is decreased with increasing the drought [17], [4]. which is in contradiction with our results. In 
our experiments, chlorophyll content of C. caucasica increased with drought deepening. Guan et al [16] 
found that total chlorophyll content in Moslach chinensis increases with decreasing soil water content. 
The increase in chlorophyll content may be associated with the decrease of leaf water content during the 
drought [19]. This may compensate the reducing leaf area under drought stress. Increase in chlorophyll 
content on one hand and reducing leaf area on the other can be attributed to the maintenance of 
photosynthetic rate under drought stress [24]. Drought stress damages the reaction centers of 
photosystem II [8], [9]. In our study, the Fv/Fm value decreased with increasing the levels of stress. This 
decrease was very small until 7 days after drought, reflecting C. caucasica seedlings has a strong ability to 
tolerate drought stress. 
We concluded that C. caucasica seedlings are resistant to drought stress. C. caucasica seedlings can 
increase its chlorophyll content and on the other hand the decline rate of the photochemical efficiency of 
photosystem II is very small. Since the drought damages the photosynthetic apparatus via reducing the 
capacity of electron acceptance, it has a negative impact on the photochemical efficiency of photosystem II 
[22]. This indicates the higher photosynthetic efficiency of C. caucasica under drought conditions. The 
results of chlorophyll fluorescence confirm that a significant increase in chlorophyll content under stress 
enhances the excitation capacity of photosystem II being one of the physiological indicators of stress 
resistance. C. caucasica would be one of the most suitable species for afforestation plans in arid and 

semiarid regions. 
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