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ABSTRACT  
One of the prime candidates in the treatment of debilitating human cancers includes a family of enzymes referred to as L-
asparaginases. The efficacious antitumor activity of these enzymes finds use in countering Acute Lymphoblastic Leukemia 
(ALL), a commonly diagnosed pediatric cancer. The enzyme's use is merited by the high remission rate and fairly rapid 
response with therapeutic index (1000). However, the downside to the use of this enzyme is the huge expenses involved in the 
treatment coupled with a high demand. Therefore, a great deal of interest has emerged in studying the possibilities of 
harnessing potential microorganisms that house this enzyme. Appropriate characterizations with low toxicity, less 
hypersensitivity without side effects are required for a large scale production. This review, hence, mainly focuses on the 
biochemical aspects of L-asparaginase production, aiming to comprehend the physiochemical characteristics, application 
and assay methods of L-asparaginase, enzyme properties and kinetics of recombinant enzyme production by fermentation. 
Processes central to these biochemical aspects, including Submerged Fermentation and Solid State Fermentation of L-
asparaginase producing organisms and downstream processing of the enzyme are also discussed. 
Keywords: L-asparaginase (L-asp); Submerged fermentation (SmF); Solid state fermentation (SSF); Antineoplastic agent; 
Acute Lymphoblastic Leukemia (ALL) 
 
INTRODUCTION  
Acute Lymphoblastic Leukemia (ALL) is the most common form of childhood cancer and it occurs 
about 6 in 10 cases among children [1,2]. Treatment of ALL is carried out by the enzyme L-
asparaginase for remission induction. L-Asparaginase (EC 3.5.1.1) belongs to a group of 
homologous amidohydrolases family, which catalyses the hydrolysis of the aminoacid L-asparagine 
to L-aspartate and ammonia (Fig. 1). The history of the L-asparaginase enzyme dates back to 1922 
when Clementi reported the presence of this enzyme in the blood of guinea pig serum [3]. Kidd, 
1953 first reported that guinea pig serum inhibits the growth of lymphosarcoma in mice and rats, 
providing conclusive evidence of its antitumor activity [4]. However, the search for the constituents 
present in guinea pig serum that are responsible for the inhibition of tumors in mice and rats was 
studied by Broome (1963) and it was found that L-asparaginase is a substrate specific enzyme, 
responsible for the hydrolysis of L-asparagine required for tumor cells [5]. Later it was shown that 
the amino acid L-asparagine is necessary for the growth of Walker carcino sarcoma 256 in vitro 
and it was also shown that cells of mouse leukemia had an absolute nutritional requirement of L-
asparagine for growth in vitro [6, 7]. Thus, this enzyme plays a major role in treatment of Acute 
Lymphoblastic Leukemia (ALL) [8, 9]. Clinical trials carried out on ALL patients using L-
asparaginase from guinea pig serum and from Escherichia coli showed positive results [10, 11]. The 
enzyme is widely distributed, being found in animal, plant and microbial sources. It was first 
reported from animal source such as guinea pig serum by Kidd (1953) and also found in tissues of 
several animals like liver of the rat, tissues of fish, pancreas, liver, brain, ovary, spleen, lung, testes 
and kidney of many of mammals and birds [12,13]. In plants it is found in barley rootlets [12, 14], 
Pisum sativum [15] etc. Microbial production of L-asparaginase from E coli was first reported by 
Mashburn and Wriston (1964) and compared with guinea pig serum enzyme [16]. It has further 
been reported by various authors from bacterial origin such as Bacillus subtilis [17]; 
Corynebacterium  glutamicum [18]; Erwinia chrysanthemi [19, 20, 21]; Escherichia coli [22, 23, 24, 
25]; Rhodosporidium toruloides [26]; Serratia marcescens [27]; Thermus  thermophilus [28]; Vibrio 
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proteus [29]; Zymomonas mobilis [30]; and from fungal origin Aspergillus terreus [31, 32, 33]; 
Aspergillus nidulans [34]; Candida utilis [35]; and a few from protozoa,  Tetrahymena  pyriformis 
[36]. Though the enzyme is widely distributed, only some of these L-asparaginases possess anti-
neoplastic activity and among the microbial sources, the most commercially notable ones are 
Escherichia coli, Erwinia carotovora and Serratia marcescens [37, 38]. Several authors have 
produced the enzyme in large quantities for the clinical purpose and it was found to be effective 
against several types of tumors [8, 12]. 
This review focuses on various conditions implemented for the production of L-asparaginase in 
sub-merged fermentation and solid state fermentation, applications and assay methods of L-
asparaginase. Biochemical characteristics and purification aspects of the enzyme are dealt with 
briefly. The aim of the review is to give an overview on microbial production of L-asparaginase 
hitherto. 
Biological role of L-asparagine in normal cells and tumor cells 
L-Asparagine is a non-essential amino acid used by immature lymphocytes for their proliferation. 
It’s biosynthetic pathway involves the conversion of oxaloacetate by transaminase enzyme to 
aspartate followed by transfer of amino group from glutamate to oxaloacetate producing α-
ketoglutarate and aspartate. The enzyme, Human asparagine synthetase in healthy cell converts 
aspartate to asparagine by using ATP as energy source (Fig. 2). Tumor cells have an unusually high 
requirement for the amino acid asparagine and cannot synthesize sufficient endogenous L-
asparagine due to very low levels of L-asparagine synthetase and therefore are dependent on 
serum levels of asparagine for their proliferation and survival [39, 40, 41, 42] or one more 
attributed reason is the inability of these cells to increase L-asparagine synthetase activity after L-
asparaginase administration [43, 44, 45]. So they use both asparagine from the diet (blood serum) 
as well as what they make themselves (which is limited) to satisfy their large L-asparagine demand. 
Thus, administration of L-asparaginase deprives dependent tumor cells of their extracellular 
source of L-asparagine and lead to apoptosis [5, 46, 8, 47, 48]. However, healthy cells escape 
unaffected as they are capable of synthesizing asparagine de novo with the aid of the enzyme L-
asparagine synthetase [49] (Fig.3).  
 
MEDIA OPTIMIZATION FOR PRODUCTION OF L-ASPARAGINASE BY SmF 
Many studies have been done to optimize culture conditions for L-asparaginase production both in 
batch and continuous fermentation. Production of this enzyme depends on various parameters like 
concentration of carbon and nitrogen sources, pH of culture medium, temperature, fermentation 
time and oxygen transfer rate. It has been observed that these parameters vary for different 
organisms [50]. L-asparaginase is mostly obtained by submerged fermentation (Table 1). In many 
countries, asparaginase either from Escherichia coli or Erwinia carotovora is used for the treatment 
of acute lymphoblastic leukemia [51]. Several research groups have studied L-asparaginase 
production and purification in attempt to minimize the impurities that produce allergenic reactions 
[52, 53-54]. 
2.1. Effect of nutrient medium  
The nutritional requirements and culture conditions are critical for the biosynthesis of L-
asparaginase and it varies from one microorganism to the other organism [55, 50-51]. Barnes et al. 
(1978) studied different culture conditions required for the growth as well as production of L-
asparaginase enzyme. Studies conducted with medium consisting of brain heart infusion, nutrient 
broth, peptone and yeast extract produced maximum enzyme with good cell dry weight. Addition 
of L-glutamic acid, L-glutamine and monosodium glutamate did not enhance asparaginase activity. 
Further studies on minimal media like nutrient broth of 3.0% (w/v) and monosodium glutamate of 
1.0% (w/v) has shown highest enzyme yield [55]. Heinemann and Howard (1969) carried medium 
optimization studies for growth with different nutrient sources like complete dehydrated media, 
protein hydrolysate, corn steep liquor and autolyzed yeast preparation (AYE). It was observed that 
maximum enzyme activity was achieved at 4 % (w/v) of AYE medium. The effect of carbon sources 
on enzyme production was studied and it was seen that when 0.4 % (w/v) of glucose, fructose, 
lactose, maltose and soluble starch were added to basal medium, the enzyme production was 
comparable to that in the basal medium. It is assumed that the depressive effect of carbohydrates 
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may be a function of their ability to lower the pH value of the fermentation [38]. It was also shown 
that no yield was observed when 0.05 % (w/v) yeast extract medium was used. In case of 3 % 
(w/v) yeast extract, there was complete inhibition of the growth of cells and enzyme production 
[56]. But in case of Klebsiella aerogenes glucose does not inhibit the production of L-asparaginase 
[57]; the reasons could be the two distantly related bacteria exhibit comparable phenomena of 
carbon catabolic control or different molecular mechanisms which attribute this property. In case 
of Bacillus sp. with two different carbon sources viz., glucose and maltose used for enzyme activity 
glucose showed maximum while with maltose, low activity was observed [58]. Early studies 
reported that glucose inhibits the synthesis of L-asparaginase in Escherichia coli, Erwinia 
carotovora, Erwinia aroideae and Serratia marscences due to catabolic repression [23, 38, 59]. 
Further studies demonstrated that when 1% (w/v) glucose, 0.4 % (w/v) sucrose, D-mannitol, D-
sorbitol and glycerol were added to the basal medium, asparaginase synthesis was inhibited, and 
the fermentation broth became acidic [38]. Similarly, other studies also provided conclusive 
evidence that glucose causes significant reduction in asparaginase activity when it was added to 
3% nutrient broth with 1% (w/v) of monosodium glutamate [55]. Recent reports suggest that 
glucose at 0.1% (w/v) showed stimulatory effect as compared to glucose free medium, while 
glucose at 1% (w/v) had a complete inhibitory effect on enzyme activity [60]. In another study, 
Tryptone Glucose Yeast extract (TGY) medium was used for the enzyme production and it was 
observed that the growth of Erwinia aroideae has reached maximum of OD540 ~0.65 within 7 to 8 hr 
in TGY medium and the medium has shown optimum enzyme activity even at large scale 
production [59]. Similarly, yeast extract and lactose were also studied for enzyme production and it 
was observed that these nutrients not only affect growth, but also have a crucial role in enzyme 
activity. To obtain optimum yield, different concentrations of yeast extract medium were used and 
found that 1.5 % (w/v) yeast extract, 1.0 % (w/v) lactose has shown maximum enzyme production 
[56]. To study the effect of carbon and nitrogen on L-asparaginase production by Enterobacter 
aerogenes, different levels of carbon and nitrogen concentrations were tried to obtain maximum 
enzyme production. It has been found that sodium citrate of 1.0% (w/v) and diammonium 
hydrogen phosphate of 0.16% (w/v) showed the best L-asparaginase activity. But with sodium 
citrate as carbon source, it was observed that there was no intracellular asparaginase activity [61]. 
Dunlop and Roon (1975) studied the effect of carbon source by using 3 % (w/v) glucose and 
nitrogen free medium, the results of which indicated maximum activity in the absence of nitrogen 
source and in the presence of glucose as energy. But very low enzyme activity was reported when 
galactose was used as energy source [62]. Studies were performed with different growth media 
under anaerobic conditions with glucose of 1% (w/v) as an additional supplement. It was observed 
that maximum specific activity attained in the presence of Tryptone of 1% (w/v). Similarly, 
asparaginase II production was observed by supplementing asparagine as sole source of nitrogen 
under aerobic and anaerobic conditions and found that E.coli was capable of growing in both 
conditions [23]. Jones and Mortimer (1973) suggested from their studies the existence of a single 
intracellular yeast L-asparaginase synthesized constitutively and functionally affected by the 
products of it’s activity [63]. Their studies on the genetic control of L-asparaginase synthesis 
showed a single structural gene called asp1 responsible for asparaginase synthesis. In case of 
Bacillus sp. isolated from intertidal marine alga, peptone was used sole source of nitrogen for the 
production of L-asparaginase and observed that maximum percentage of enzyme was synthesized 
at 0.1 % (w/v) peptone [64, 65]. Peter  studied the effect of asparaginase in different media such as 
yeast malt glucose, without glucose and synthetic glucose-asparagine and it was observed that 4% 
peptone medium has shown good yield of L-asparaginase with Actinomycetes, Streptomyces griseus 
ATCC 10137 [66]. Maladkar et al. used different carbon and nitrogen sources for fermentative 
production. Different sources like lactose, monosodium glutamate, corn steep liquor, tryptone and 
yeast extract showed significant enhancement in the enzyme activity. Asparagine 0.2% (w/v) when 
used as substrate showed 6 times higher productivity indicating a distinct induction [67]. It has 
been reported that L-asparaginase of bacterial origin can lead to hypersensitivity in long term use 
as well as other side effects like allergic reactions and anaphylaxis [68]. The search of eukaryotic 
microorganisms led to the identification of L-asparaginase production with less side effects in 
filamentous fungi [31]. It also reported that eukaryotic microorganisms like yeast and fungi have 
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shown reasonable production of the L-asparaginase [69-70, 30, 32, 71-74]. It has been shown that 
L-asparaginase is nitrogen regulated and by altering different nitrogen sources, enzyme production 
could be enhanced [31]. First it was reported that growth of Saccharomyces cerevisiae is nitrogen 
regulated [75]. Cell growth and L-asparaginase production are usually stimulated by supplying 
complex forms of nitrogen such as peptone, yeast extract and casein hydrolysate [76]. It has been 
reported that yeast extract is essential for cell growth as well as L-asparaginase production from 
Erwinia carotovora [77, 67]. Studies were performed by varying different nitrogen sources for L-
asparaginase production for two different fungal strains viz., Aspergillus tamari and Aspergillus 
terreus [31]. It is also reported that L-asparaginase from Aspergillus oryzae showed an optimum 
enzyme activity with L-asparagine and glucose as the sole source of nitrogen and carbon 
respectively. Similarly, bacterial strains also used the same medium for the enzyme production. 
The medium used for the fungal include L-asparagine of 1% (w/v) and glucose 0.2% (w/v). But in 
case of bacterial species the concentration of substrate L-asparagine was 0.5% (w/v) and same 
glucose concentration were used as that of fungal species [78]. In recombinant production of L-
asparaginase several authors reported the use of peptone, yeast extract, beef extract and maltose 
as sole source of carbon and nitrogen for maximum enzyme activities [19, 79-80]. 
Effect of pH, temperature and agitation  
L-asparaginase is commonly observed by semi-quantity plate assay, where pH plays a crucial role 
in determination of the enzyme [66]. For semi-quantification normally the medium is set in acidic 
or in neutral condition (around pH 5.5- 7.0). The pH indicator phenol red is incorporated in the 
medium containing asparagine as sole source of nitrogen. Phenol red, at acidic conditions is yellow 
in color but at alkaline condition it turns pink in color. Hence pink colonies are assayed for enzyme 
activity [78]. Temperature is one of the important process parameters for the enzyme production 
and it has been observed in several reports that optimum temperature ranges between 25 °C and 
37 °C (Table 1). Similarly, aeration and agitation are also critical parameters for the maximum 
production of L-asparaginase. Geckil and Gencer, (2004) used Vitreoscilla hemoglobin (VHb) in 
Enterobacter aerogenes to evaluate the affect of such a highly efficient recombinant oxygen-uptake 
system on L-asparaginase production under different culture conditions. It was found that VHb 
expressing strain had lower L-Asparaginase activity than the wild type under different aeration 
conditions. The highest enzyme activity was observed in cultures under low aeration and low 
agitation. The enzyme activity decreased under both complete aerobic and anaerobic conditions 
with average pH 7.56±0.28. Therefore aeration and agitation were also found to be control factors 
for enzyme production [60]. The requirements for asparaginase production by submerged 
fermentation with Serratia marcescens ATCC 60 is limited aeration with a zero level of dissolved 
oxygen supply from 15 h to 32 h fermentation [38], the same also reported by other authors in 
Erwinia aroideae and Citrobacter sp. [56, 50]. From the study  on affect of temperature (26 °C, 32 °C 
and 37 °C), it was found that an optimum temperature of 26 °C and pH of 5.0 would effect 
maximum enzyme production as well as peak cell population with autolyzed yeast extract medium 
[38]. It has been reported that the enzyme formed denovo when the pH is brought to 7.5 and 
consequently dissolved oxygen at zero level. So, asparaginase can be adjusted at any time simply by 
controlling the pH to 7.5 and dissolved oxygen to reach critical rate transfer [55]. Similar studies 
have shown optimum temperature of 28 °C for growth and 24 °C for enzyme production with 
activation energy of 8,500 cal mole-1.  
In continuous fermentation the enzyme concentration increased with decrease in dilution rate, the 
maximum enzyme yield achieved within 2 to 3 days. Temperature also showed effect on enzyme 
production and a 20% reduction in enzyme yield was reported due to shift in temperature [56]. 
Several studies were performed on enzyme production and obtained maximum enzyme yield at pH 
8 and temperature 37 °C compared to that of marine Vibrio sp. [81]. Peter (1972) performed the 
experiment to find the effect of aeration on L-asparaginase production by volume to flask volume 
of 1:1.25 to 1:10 with 4% (w/v) of peptone. It was found that cells growing under conditions of 
greatest aeration had high specific L-asparaginase content. Consequently, studies were done with 
various pH ranges between pH 5.5 & 9.0 and found that the optimum pH was 8.5 for maximum 
enzyme activity [66]. In case of Bacillus sp, different pH optima were observed while single 
optimum in Moraxella sp. W2 (PH 5.6) and Vibrio sp. (pH 8.7) were reported [65]. Maya et al. 
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(1992b) observed maximum activity at 37 °C in Moraxella sp. and in case of Vibrio sp. it was 60 °C. 
It has been reported that growth of Streptomyces plicatus was maximum at pH-8.0 but the enzyme 
activity was not highly enhanced; therefore it indicates that the growth is independent of the 
enzyme activity [82]. The influence of temperature on enzyme activity and growth of Streptomyces 
plicatus observed maximum at 29 °C which is almost equal to that of temperature of water column 
of the study area. In another report, using Streptomyces sp. from marine villorita cyprinoids 
showed optimum enzyme activity at pH-7.0 [83]. The maximum enzyme production from Thermus 
thermophilus HB8 has been reported at higher temperature of 70 °C with pH 7.0 [28]. In case of 
recombinant L-asparaginase production, the optimum pH and temperature are observed to be in 
between pH 6.0 & 7.0 and temperature 28 & 30 °C respectively [84,19,79]. In case of SSF, the 
authors maintained optimum pH and temperature at 7.4 and 37 °C respectively for the enzyme 
production [85-86]. Similarly, it has been reported from fungal species, for maximum enzyme 
activity, the parameters are set at pH 6.5 and temperature of 40 °C [87]. 
Activity by actinomycetes species 
Major research has been focused on the production of L-Asparaginases from various 
microorganisms like bacteria, fungi and yeast [88]. The maximum yield of Serratia marcescens 
ATCC 60 showed optimum activity of 3.7 U ml-1 with productivity of 0.077 U ml-1 h-1 within 48 h in 
shake flask. It was also observed in scale up, which is carried out in 4L bottles and found highest 
enzyme activity of 4 U ml-1 with a productivity of 0.095 U ml-1 h-1 between 40-42 h. Further studies 
were performed in high volume of 60 L fermentor and found that the fermentor yielded 3.1 U ml-1 

with productivity 0.088 U ml-1 h-1 in 35 h [38]. Similar conditions were studied using Serratia 
marcescens ATCC 60 and observed maximum specific activity of 0.7 U mg-1 of protein [89]. Peterson 
and Ciegler, (1969a) reported the production of L-asparaginase by submerged fermentation using 
Erwinia aroideae NRRL B-138. Maximum enzyme production was obtained with a yield of 1,250 IU 
g-1 and stable upto 24h with productivity of 0.218 U g-1 h-1. After obtaining optimum yield in fed 
batch, further studies were performed on large scale production with similar fermentation 
conditions and found maximum enzyme yield of 960 IU g-1 with productivity of 0.056 U g-1 h-1 [77]. 
The purified enzyme tested from Erwinia aroideae NRRL B-138 has shown good response when 
compared with E.coli and Serratia marcescens [77]. Comparisons of batch and continuous 
processes were performed to obtain larger quantity of L-asparaginase from Erwinia aroideae NRRL 
B-138. The effect of growth rate kinetics and enzyme production were observed and found that 
3%(w/v) yeast extract inhibited both cell growth as well as enzyme production. Kinetic data has 
shown the specific growth rate of µ~0.526 h-1 and saturation rate constant of Ks≤ 1.18 g l-1. In batch 
and continuous fermentation, the maximum enzyme activity obtained was 4 U ml-1 with 
productivity of 0.25 088 U ml-1 h-1 and 3.7 U ml-1 respectively [56]. Enterobacter aerogenes was 
used to study the enzyme production and found a maximum enzyme activity of 0.60±0.02 U ml-1 
with productivity of 0.021 U ml-1 h-1 at 37 °C within 24 h in shake flask. Further studies on scale up 
of the enzyme were performed in 2L batch fermentation and observed maximum enzyme activity 
of 1.2 U ml-1 with productivity of 0.2 U ml-1 h-1 at aeration 1.0 vvm with 700 rpm in 6 h [61]. But 
Escherichia coli A-1 has shown maximum enzyme production of 10.8 U ml-1 when compared with 
all bacteria reported above [55]. Gulati et al. (1997) used a semi-quantitative plate assay for 
screening of L-asparaginase producing microorganism and found that bacterial strain of Bacillus 
licheniformis has shown maximum activity of 0.14 U ml-1 under the optimal conditions at pH 6.2 
and temperature 37 °C in 96 h [78]. An interesting observation and a potentially important one was 
that L-asparaginase produced from Serratia marscences is required considerably in lesser amounts 
of enzyme to induce complete regression of Gardener lymphosarcoma in mouse than compared to 
L-asparaginase from others sources [27]. The Serratia marscences enzyme was more resistant than 
the Escherichia coli and Erwinia carotovora enzymes to dissociation by sodium dodecyl sulphate, 
the reason could be due to the finding that the Serratia enzyme had a relatively high 
hydrophobicity [90]. In another report, bacterial strain Pectobacterium carotovorum MTCC 1428 
was used for glutaminase-free L-asparaginase production and a maximum enzyme activity of 15.39 
U ml-1 in shorter fermentation time of 12 h with volumetric productivity of 1.282 U ml-1 h-1 was 
found with optimized nutrient parameters [91].  
Activity by actinomycetes species 
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Few reports are available on the actinomycetes species: Streptomyces plicatus strain has shown 
optimum amount of enzyme activity of 33.5 µg ammonia mol-1 h-1 at pH-7 and temperature of 29±2 
°C, when the process was carried out in batch fermentation [82]. In another report with marine 
actinomycetes, maximum enzyme activity of 49.2 U ml-1 was found with soil isolate named S3 at 
fermentation conditions of pH-7.5 for 50 °C [92]. There are some reports on the production of L-
asparaginase from marine sediments [93] and gut of estuarine fishes [94].                   
Activity by fungal species 
In order to minimize the side effects shown by bacterial L-asparaginase such as hypersensitivity, 
the search of eukaryotic microorganism for L-asparaginase with less side effects was taken up in 
filamentous fungi [31]. It was reported that eukaryotic microorganisms like yeast and fungi have 
reasonable production of the enzyme [69-70, 30]. It has also been shown by various authors the 
production of L-asparaginase from the mitosporic fungal genera such as Aspergillus, Penicillium and 
Fusarium [32, 71-74]. Maximum enzyme activity of 0.058 U ml-1 was observed in Aspergillus terreus 
10C217 with proline 2% (w/v) at an optimum pH 6.2 for 30 °C in 48 h [31]. Wherein, Aspergillus 
tamari maximum enzyme activity was found to be of 0.038 U ml-1 with same conditions as above. In 
their studies, it was found that production of L-asparaginase is nitrogen regulated and similar 
study was also reported using Saccharomyces cerevisae for the enzyme production [75]. Of 17 
isolates of tulsi endophytes tested for the production of L-asparaginase by rapid plate assay 
technique [78], only three isolates showed positive for the production of L-asparaginase enzyme by 
forming a pink zone around the colony.  The maximum zone was found in the isolate TRB4 (1.2 cm. 
dia) and the minimum zone was produced by the isolate TLB2 (0.8 cm dia). Also, determination of 
enzyme activity by the method of Imada et al. (1973) demonstrated the maximum activity of 0.45 U 
mg-1 ml-1 and the isolate TLB2 showed the least activity of 0.30 U mg-1 ml-1 [95]. Similarly, 
Aspergillus oryzae was used for L-asparaginase production and maximum enzyme activity of 0.14 U 
ml-1 was found within 96 h with semi-quantitative plate assay for detection of the enzyme [78]. In 
another report, Streptomyces griseus was used for the production of L-asparaginase and obtained 
maximum enzyme activity of 0.0117 U ml-1 with peptone as sole source of nitrogen [66]. Whereas, 
Aspergillus terreus showed maximum enzyme activity of 36.97 U ml-1 with productivity of 0.513 U 
ml-1 h-1 with ground nut oil cake, which could be used for SSF with optimized conditions [96].  
Effect of metal ions and salt tolerance  
L-asparaginase activity was varied in presence of enhancers or enzyme inhibitors. In order to study 
the synergistic effect on the enzyme production, different metal ions were studied and it was found 
that EDTA strongly inhibited the enzyme activity in some cases. Similar observations were made 
with Fe2+and Ni2+ [97, 92], Cu2+ and Zn2+ [65]. In the salt tolerance, it was found that 2% (w/v) NaCl 
has relatively maximum enzyme production capability compared to other concentrations [64].  
However, E.coli has shown good salt tolerance up to 5% (w/v) and this concentration did not have 
any effect on enzyme production with this strain [23]. It was shown that L-asparaginase was 
inhibited in presence of metal ions like Hg 2+, Ni 2+, Cd 2+, Cu 2+, Fe 3+, Mg 2+, and Zn 2+, while thiol-
protecting reagents such as DTT, 2-ME, and glutathione acted as enhancers for the enzyme 
production [83, 98, 58, 92]. EDTA and some amino acids like L-cysteine and L-histidine have 
stimulatory effect on activity of L-asparaginase. Also, the activity was enhanced with some 
reducing agents like 2-mercaptoethanol (2-ME), DL-dithiothreitol (DTT), and GSH (reduced), and 
inhibited in the presence of thiol-group-blocking reagents such as p-chloromercuribenzoic acid 
(PCMB) and iodoacetamide [98]. All these facts indicated that L-asparaginase is not a 
metalloprotein. Hence, sulfhydryl group plays an important role in catalytic activity of L-
asparaginase [43]. Furthermore, Gaffer and Shethna (1977) isolated L-asparaginase from various 
biological sources and compared their biochemical and biological activity against tumors. L-
asparaginase from Azotobacter vinelandii had an optimum pH different from asparaginases of 
Bacillus coagulans [99], guinea pig serum [100], and Serratia marcescens [101], which have been 
reported to have broad pH optima. Sensitivity of Azotobacter vinelandii asparaginase to p- 
hydroxymercuribenzoate (pHMB), N-ethylmaleimide, iodoacetate, and heavy-metal ions (Hg2+, 
Cu2+, and Zn2+) further confirmed the dependence of the activity of the enzyme upon sulfhydryl 
groups [43].  
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PRODUCTION OF L-ASPARAGINASE BY SSF 
Few reports are available on solid state fermentation technique for the L-asparaginase production 
(Table 2). Ashraf et al. (2004) has reported the production of L-Asparaginase from Pseudomonas 
aeruginosa 50071 by solid-state fermentation using soya bean meal as substrate [85]. L-
Asparaginase production was also reported from Aspergillus niger in solid state fermentation using 
agro wastes from three leguminous crops (bran of Cajanus cajan, Phaseolus mungo and Glycine 
max) [87]. In optimizing solid state fermentation for the production of L-asparaginase by 
Pseudomonas aeruginosa 50071, fifteen culture conditions were examined for their role in enzyme 
production and specific activity, using Plackett-Burman factorial design [86]. Factors such as pH, 
casein hydrolysate and corn steep liquor were the most significant factors improving enzyme 
production process. The optimal values of the 3 factors that bring about maximum L-asparaginase 
activity of 142.8 IU were identified as pH 7.9, casein hydrolysate 3.11% and corn steep liquor, 
3.68% using Box-Behnken design. Ashraf et al. (2004) reported the L-asparaginase production by 
SSF using soya bean meal of particle size 0.4-0.8 cm as a substrate. The crude enzyme has shown 
maximum activity of 165.11 IU ml-1 under optimal conditions of 50 % (w/v) moisture content with 
pH 7.4 at 37 °C for 4 days. After purification steps the enzyme has shown maximum yield of 43 % 
with 106 fold times increase than the crude enzyme. It was observed that under optimum 
condition, the enzyme had maximum specific activity of 1900 IU mg-1 with Pseudomonas aeruginosa 
50071 [85]. Abha, 2006 first reported on fungal strain Aspergillus niger using solid state 
fermentation technique for L-asparaginase production. By performing two-way ANOVA, the 
optimum process parameters were found to be pH 6.5 and temperature 30±2 °C. Initial moisture 
content of 70 % (w/v) with Glycine max bean size 1205-1405µ as a substrate for enzyme, the 
enzyme showed maximum titer value of 40.0±3.35 U g-1 dry substrate. The enzyme was purified 
with 80% ammonium sulfate then followed by DEAE cellulose method with a maximum enzyme 
yield of 92.04 % and 72.05 % respectively [87].     
 
PURIFICATION AND BIOCHEMICAL CHARACTERIZATION OF L-ASPARAGINASES 
E.coli produces two distinct Asparaginases (I and II), designated as EC-1 and EC-2 [52, 102-103]. 
Asparaginase II differs from Asparaginase I by its broad pH activity profile and its higher substrate 
affinity. Asparaginase II (EC -2) has the anti-tumor properties. Its Michaelis Menten parameter Km 
was estimated a 1.25 X 10-5 [104]. A low Km value at physiological pH is an absolute requirement 
for anti-tumor activity since L-Asparagine concentration must be lowered to atleast 10-5 M in the 
medium to become rate-limiting in protein synthesis. Asparaginase I is usually eliminated during 
purification. Asparaginase II was produced optimally by bacteria grown between pH 7 and 8 at 37 
°C. It was also shown that purified asparaginase II is effective inhibitor of cell free protein synthesis 
when compared to asparaginase I enzyme [23]. The enzyme is tetrameric with each subunit 
weighing 32-38 kDa: Molecular weight was estimated to be 141 kDa [24-25]. Its Isoelectric point is 
at pH 4.9 and it’s extinction coefficient was estimated at 7.1 [104]. L-asparagine II (asn II) gene 
from E. coli W3110 was cloned into pGEX-2T DNA vector under the tac promoter and was over 
expressed in E. coli BL21(DE3) and purified to homogeneity 238.4 fold by utilizing chromatography 
technique on DEAE-Sepharose fast flow, Glutathione S Sepharose 4B columns and thrombin. The 
molecular mass of the purified enzyme was found to be 40 kDa from SDS-PAGE [105]. The free 
recombinant enzyme from E-coli had an optimum pH at 7.5 while for the immobilized enzyme, it 
was shifted to 8.5. The optimum temperatures for free and immobilized enzymes were 37 °C and 
50 °C respectively.  
L-Asparaginase from Cornyebacterium glutamicum has been purified 98-fold by protamine 
sulphate precipitation, DEAE-Sephacel anion exchange, ammonium sulphate precipitation and 
Sephacryl S-200 gel filtration. Molecular mass as determined by SDS-PAGE was 80 kDa. The 
purified enzyme showed maximum activity at pH 7 and at temperature 40 ºC. A Lineweaver-Burk 
analysis showed a Km value of 2.5 X 10-3 M [18]. Tosa et al. (1972) purified the enzyme from Proteus 
vulgaris. Sequentially the methods used were cell lysis by lysozyme and toluene, pH treatment, 
ammonium sulfate fractionation, Sephadex, G-100 gel filtration, DEAE-Sephadex chromatography 
and crystallization by the addition of ammonium sulfate. Its Michaelis Menten parameter Km was 
estimated at 2.6 x 10-5 M. Optimum pH was between 7 and 8 and its isoelectric point was at pH 

Kumar and Sobha / L-Asparaginase from Microbes: a Comprehensive Review 



ABR Vol 3[4] 2012 ~ 144 ~           © SOE, INDIA 

5.08.The enzyme is inactivated by heat, organic solvents, and chymotrypsin treatments. The 
presence of L-asparagine or its analogs protects the enzyme from the inactivation caused by these 
treatments [106]. Purified enzyme from mesophilic fungus Cylindrocarpon obtusisporum showed 
about 65 fold with an overall yield of 11%. It is constituted of four identical subunits and had an 
apparent molecular weight of 216 kDa. The pI of the enzyme was at pH 5.5. The pH and 
temperature optima for the enzyme activity were 7.4 and 37 ºC, respectively. The Km of the L-
asparaginase was found to be 1 x 10-3 M. Metal ions, such as Zn2+, Fe2+, Cu2+, Hg2+ and Ni2+ 
potentially inhibited the enzyme activity, while metal chelators like EDTA, CN-, and cysteine 
enhanced the activity [97]. Rozalska (1989) purified 400-fold L-asparaginase from Staphylococcus 
with 40% recovery. The procedure involves ammonium sulphate precipitation and a column 
chromatography on Sephadex G-200 gel filtration. The enzyme had isoelectric point at pH 4.4 with 
an approximate molecular weight of 125 kDa which was estimated by Sephadex G-200 gel 
filtration. The enzyme is composed of non identical subunits. The polyacrylamide-SDS gel 
electrophoresis indicated two non –identical subunits with molecular weights 18 and 22 kDa [107]. 
A homogeneous preparation of L-asparaginase was obtained from Vibrio succinogenes, an 
anaerobic bacterium from the bovine rumen by ammonium sulfate fractionation followed by 
chromatography on columns of hydroxylapatite, CM-Sephadex, and DEAE Sephadex. The yield was 
about 40-45 %. The enzyme has a molecular weight of 146 kDa and a subunit molecular weight of 
approximately 37 kDa. Lineweaver-Burk analysis showed a Km value of 4.78 x 10-5 M. The 
isoelectric point of the L-asparaginase is 8.74 and the pH optimum was 7.3 [108]. L-asparaginase 
from the Deuteromycete Fusarium tricinctum has been purified to apparent homogeneity by 
ammonium sulfate fractionation followed by chromatography on DEAE cellulose Ampholine and 
the final step was preparatory disc electrophoresis. The molecular weight of the enzyme, as 
determined by sucrose density gradient ultracentrifugation was between 161 and 170 kDa. A Km 
value of 5.2 x 10-5 M was obtained by use of the GLDH coupled-assay system. The pH optimum was 
between 7.5 and 8.7.The enzyme was stable to freezing but was inactivated completely and 
irreversibly upon exposure to 8 M urea [109] (Table.3).  
Clinically used L-asparaginase is available in three forms: two are native forms purified from 
bacterial sources and one is the modified form of the native one (Table 4). The native enzyme from 
E.coli is marketed commercially as Elspar by Merck and Co and that from Erwinia carotovora is 
available as Erwinia L-asparaginase from Ogden Bioservices Pharmaceutical Repository in the 
United States. The Erwinia product is commercially available as Erwinase in Canada and Europe 
marketed by Porton. In Europe, two different preparations of E.coli L-asparaginase (L-asparaginase 
Medac and Crasnitin) are available. A fourth new recombinant E-coli asparaginase is engineered to 
have an amino acid sequence identical to that of Asparaginase Medac. Efficacy and toxicity profile 
of this recombinant drug are comparable to those of the other E-coli asparaginases and is currently 
under clinical evaluation [110]. A new approach to maintain enzyme activity and reduce formation 
of antiasparaginase antibodies is the encapsulation of the enzyme into homologous red blood cells 
[111]. Also, a Pegylated form of recombinant Erwinia asparaginase is under pre-clinical study 
[112]. The parenteral administration of asparaginase results in rapid and complete deamination of 
the amino acid asparagine, especially in the plasma and, in part, the cerebrospinal fluid (CSF). 
Results of the studies carried out by Dana-Faber Cancer Institute (DFCI) ALL consortium and 
Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) suggest that high-dose native E-coli 
asparaginase (25,000 IU-m2 weekly for weeks) significantly improve complete continuous 
remission in pediatric patients with T-cell ALL and lymphoblastic lymphoma compared with 
patients treated with a lower dose asparaginase regimen. A study carried out by Rizzari et al. 
(2001) revealed a significantly finding that no significant difference in disease-free survival could 
be observed between patients who received standard treatment (10,000 IU-m2 asparaginase for 4 
doses during reinduction) and those who received high-dose treatment (25,000 IU-m2 
asparaginase weekly for 20 weeks during reinduction and early continuation) [113].  
 
L-ASPARAGINASE AND ITS DEVELOPMENT AS A CHEMOTHERAPEUTIC AGENT  
L-asparaginase is used as a chemotherapeutic drug in the treatment of a variety of 
lymphoproliferative disorders and lymphomas, more particularly acute lymphoblastic leukemia 
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(ALL) where it continues to be of benefit when used in sequential chemotherapy [114-115]. Most 
of the drug applications include use in cancers [54] like pancreatic carcinoma [116], Bovine 
lymphomosarcoma [117], diagnosis of acute pancreatitis [118] and childhood ALL [119]. It is also 
used in variety of lymphoproliferative disorders and lymphomas [120]. Bacterial L-asparaginase is 
widely used in pediatric Acute Lymphoblastic Leukemia (ALL) [121]. It also used in treating 
meningeal leukemia successfully [122]. L-asparaginase, first observed in the guinea pig serum by 
Clementi, (1922) was identified to be a cytotoxicant and growth inhibitor [3, 123, 4, 6-7, 5]. The 
therapeutic potential of this enzyme as an anti-lymphoma agent was established by Broome, 1961 
[124]. Out of the two isoforms of L-asparaginase that were partially purified from guinea pig serum 
by Yellin and Wriston (1966), one exhibited anti-lymphoma activity [100]. Interestingly, L-
asparaginase of bacterial origin was also demonstrated to have tumoricidal activity [16, 102]. Since 
then several studies have been attempted for large-scale production of enzyme for pre-clinical and 
clinical studies [52, 125]. The efficacy of L-asparaginase in the treatment of human leukemic 
subjects was first successfully demonstrated by Oettgen et al. (1967) and for more than three 
decades from then [126], L-asparaginase is employed as a drug in combination chemotherapy for 
pediatric ALL as well as in multiagent regimens for adult ALL [127-129]. Although the drug proved 
to be effective chemotherapeutic agent without cross-reactivity, yet it’s use is limited due to the 
manifestation of clinical hypersensitivity in about 80% of patients when administered in the native 
form. For this reason, attempts are being made to develop alternative forms of the enzyme without 
the loss of its tumoricidal activity [130-131]. 
The application of the drug as a chemotherapeutic agent is mainly based on its catalytic property of 
hydrolyzing L-asparagine to L-aspartic acid and ammonia [5, 132-133]. Tumor cells have an 
unusually high requirement for the amino acid asparagine but have very low levels of L-asparagine 
synthetase and therefore are dependent on serum levels of asparagine for their proliferation and 
survival [39-42]. The enzyme L-asparaginase causes depletion of serum asparagine resulting in the 
death of tumour cells owing to nutritional deprivation. However, healthy cells escape unaffected as 
they are capable of synthesizing asparagine de novo with the aid of the enzyme L-asparagine 
synthetase [49]. The enzyme is usually considered to be cell cycle phase nonspecific and also 
reported to arrest the cell cycle in G1 phase in the murine and human T- lymphoblastoid cell lines 
[134-135, 118] and lead to apoptosis. Although the general therapeutic benefit of L-asparaginase is 
attributed to its ability to cause nutritional deprivation, yet some studies emphasize the 
requirement of a functional p53 protein for causing apoptosis. Therapy for the ALL with the native 
L-asparaginase is limited because of its immunogenicity in approximately 25% of the patients 
[136] and its very short half-life. The shortened plasma half life of the enzyme appears to be more 
important especially since the maximum initiation of catalytic activity by immune serum has been 
found to be 45-53% [139-141]. Several attempts have been made to improve the half-life of the 
enzyme and reduce its immunogenicity by chemical modification. PEGylation of the enzyme has so 
far been found to be the most successful method of chemical modification as it reduced the 
immunogenicity without compromising the anti-tumor activity [142-143, 42]. In pre-clinical 
studies, L-asparaginase was found to be effective against more than 50 murine tumors including 
rat and canine lymphosarcoma, rat fibrosarcoma, walker carcinosarcoma and Jensen’s sarcoma 
[133, 132]. In humans, only one tumor viz., childhood and adult ALL was found to respond 
consistently. Inconsistent response to the drug was shown by acute myeloblastic leukemia (AML), 
Non-Hodgkin’s lymphoma (NHL) and chronic leukemias. Thus, tumors of lymphoid origin were 
found to be more susceptible to the drug than the solid tumors. Pegaspargase can be used in the 
reinduction and maintenance therapy of patients with ALL and it has been reported that 
polyethylene glycol asparaginase decreases the toxicity and can be administered for a longer time 
[144-146]. This form of L-asparaginase is very effective as it needs only to be administered once 
every 2 weeks unlike the native form which has to be administered every 2-5 days. Another 
limitation of L-asparaginase is that it has a distinct toxicity profile, ranging from acute 
hypersensitivity (immunological sensitization) and hyperglycemia to hepatocellular dysfunction 
and pancreatitis (inhibition of protein synthesis) [147]. All commercially available asparaginase 
preparations are reported to have similarity in the frequency of toxicity except in the case of 
pegaspargase where suppression in allergic reaction is observed. L-asparaginase therapy is also 
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reported to be associated with imbalances in the formation of clotting factors and neurotoxicity. 
The enzyme work proceeded in several laboratories and clinics leading to clinical trials [148-149]. 
 
TOXICITY OF THE DRUG L-ASPARAGINASE  
In general, hypersensitivity reactions due to antiasparaginase antibody production were found in 
up to 60 % of patients, particularly with native E-coli asparaginase as compared to the Pegylated 
enzyme [150-151]. It has been observed that the route of administration determines the clinical 
symptoms with a greater incidence of major skin reactions observed with intra muscular (IM) 
administration compared with intravenous (IV) administration. Clinical hypersensitivity is 
reported to occur almost exclusively in post induction regimens (intensification, reinduction) when 
asparaginase has not been given for weeks or months. The various possible explanations for the 
rarity of allergic reactions during remission induction include delayed complement activation and 
antibody production, suppression due to intensive corticosteroid treatment, frequent dosing 
causing a desensitizing effect etc. There is a divided opinion on the incidence of hypersensitivity 
between age groups; some authors reporting that they are similar between age groups [152-153] 
while others suggest that infants and younger patients develop antibody and hypersensitivity 
reactions less frequently than teenagers and adult patients [154]. 
Studies reporting that antibodies, instead of leading to clinical hypersensitivity, might cause rapid 
inactivation of the asparaginase resulting in sub-optimal asparagine depletion, often referred to as 
“silent hypersensitivity” or “silent inactivation” have also been cited and is estimated to occur 
approximately in 30 % of the patients [155]. Generally, patients exhibiting clinical allergy 
symptoms to one formulation of asparaginase are switched to another product to ensure that they 
receive the most efficacious treatment regimen possible. However, the switch may not be optimal 
because antibodies against E-coli asparaginase can cross-react with PEG-asparaginase [156-157]. 
Also pegasparaginase may induce silent inactivation with antibodies resulting in a fast decline in 
asparaginase activity. Therefore, switching from pegasparaginase to E-coli asparaginase after an 
allergic reaction is not a viable treatment option [158-159]. Pancreatitis, abnormalities of 
hemostasis, hyperglycemia, abnormalities of lipid metabolism etc. are other asparaginase-related 
toxicities that are more common in adolescents and adults than in younger children [153]. Liver 
toxicity with elevated liver enzymes or increased bilirubin is a frequent clinical problem in adult 
patients [160]. It has been recommended that measuring triglycerides (TG) before and during 
asparaginase treatment could prevent further increase of TG and decrease the risk of potential 
complication [161]. 
 
ASSAYS FOR DETERMINATION OF L-ASPARAGINASE ACTIVITY 
There are different methods for estimating the activities of L-asparaginase quantitatively and 
qualitatively are presented in Table 5, appropriate references could be referred to.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Degradation of asparagine by L-asparaginase enzyme. Nuc indicates nucleophilic change. 
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Fig.2. Biosynthesis of L-asparagine 

 
Table 1 : Summary of fermentation conditions for production of L-asparaginase by Sub-merged 

fermentation (SmF) 
Microorganism 
 

Nutrition 
requirements % (w/v) 

Fermentation conditions  Activity 
(U ml-1) 

Volumetric 
Productivity 
(U ml-1 h-1) 

References 
 
 

Erwinia aroideae 
NRRL B-138      

Tryptone (0.05); 
Glucose (0.1); 
Yeast (0.05) 

pH 7.0; 28 °C ; 200 rpm; 8 h; 
(2.8L); fernbatch flasks 
pH 7.0; 28 °C ; 300 rpm; 24 h; 
aeration 0.5 (vvm); (20L) Semi-
pilot 

1250a 
 
960a 

156.25b 
 
40 b 

[77] 

Bacillus sp.  Peptone (0.1)   pH 8.0; 37 °C ; 200 rpm; rotary 
shaker 

RA  - [64] 

Serratia marcescens 
ATCC 60 

AYE (4) pH 5.0; 26 °C; 250 rpm; 48 h; 
(0.5L); EF 
pH 8.5; 40 to 42 h; (4L); P 
pH 8.4; 35 h; F 

3.7 
4  
3.1  

0.077 
0.095 
0.088 

[38] 

Erwinia aroideae 
NRRL B-138      

Lactose (1.0);  
Yeast extract (1.5); 
K2HPO4 (0.1) 
 

pH 7.5; 24 °C; 550 rpm; 16 h; 
aeration 1.0 (vvm); antifoam 
0.02 (% v/v); B 
pH 7.5; 24 °C; D=0.05 h-1 ; 
activation energy- 8,500 cal 
mole-1 

4  
 
3.7 

0.25 
 
 
 
- 

[56] 

Enterobacter 
aerogenes NCIM 
2340 

Sodium citrate (1); 
Diammonium 
hydrogen phosphate 
(0.16) 

pH 7.0; 37 °C; 24 h; (0.25L); B 
Aeration 1.0 (vvm); 700 rpm; 6 
h; (2L); B 

0.60±0.02  
1.2  

0.021 
0.2 

[61] 

Erwinia 
Chrysanthemi 3937 

Peptone (1.0); 
Yeast extract (0.5); 
NaCl (1.0) 

pH 5.5-7.0; 24 °C; B 2.25 - [19] 

Streptomyces 
plicatus 

NaCl (0.5) pH 7.0; 29±2 °C; B  - 33.5d [82] 

Streptomyces  griseus 
ATCC 10137 

Peptone (4.0) pH 8.5; B 0.01  - [66]                                         

Thermus 
thermophilus HB8 

Tryptone (0.5); 
Glucose (0.1);     
Yeast extract (0.3) 

pH 9.2; 70 °C 494e  - [28] 

Pectobacterium 
carotovorum MTCC 
1428 

Glucose (0.207);   
L-asparagine (0.52) 

pH 7.0; 30 °C; 180 rpm; 12 h; EF 
Uncontrolled pH; 30 °C; 200 
rpm; aeration 1.5 (vvm); 12 h; 
 (4 L) fermenter 
 

14.71 
15.39 

1.225 
1.282 

[91] 
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Bacillus 
sp.DKMBT10 

L-Asparagine (0.6);  
glucose/maltose (0.3) 

pH 7; 37 °C; 200 rpm; 24 h 1.12c - [58] 

Pichia pastoris BSM2 pH 5.0; 30 °C; aeration 5 (l min-

1); (2L); antifoam 
(polypropylene oxide); B 

85.6 1.083 [79] 

Aspergillus terreus 
IOC 217 

Proline (2.0)  pH 6.2; 30 °C; 160 rpm; 48 h; B 0.058  0.0012  [31]  

Aspergillus oryzae L-asparagine (0.5) pH 6.2; 37 °C; 250 rpm; 96 h; B 0.14  0.0014 [78] 

Aspergillus terreus 
MTCC 1782 

L-Asparagine (1.0); 
Corn flour (1.5); 
Glucose (0.2) 

pH 6.2; 30 °C; 160 rpm; 72 h. 33.25 0.462 [163] 

Aspergillus terreus 
MTCC 1782 

L-asparagine (1.0); 
Yeast extract (1.0); 
Peptone (0.6);  
Glucose (0.4) 

pH 6.0; inoculum size (1.5);  
30 °C; 160 rpm; 72 h. 

24.10 0.334 [164] 

Aspergillus terreus 
MTCC 1782 

Ground nut oil cake  
Flour (3.99); Sodium 
nitrate (1.04); 
L-asparagine (1.84); 
Sucrose (0.64) 

pH 6.0; 35 °C; 160 rpm; 72h; 
spore count of 2 × 107 ~ 108 ml-1 

36.97 0.513 [96] 

EF, Elerenmeyer flask; F, Fermentor; P, Bottle; B, Batch; a, U g-1; b, U g-1 h-1; c, Specific activity; d, µg ammonia ml-1 h-1;  
E, International units (IU); RA, Relative activity; AYE, Autolyzed Yeast Extract; BSM2, [117] 
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Fig.3. Role of L-asparagine in normal cells and tumor cells 
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Table 2: Summary of fermentation conditions for production of L-asparaginase by Solid state 
fermentation (SSF) 

 Microorganism Substrates Fermentation conditions Activity (U 
ml-1)  

Volumetric 
Productivity 
(U ml-1 h-1) 

References 

Pseudomonas 
aeruginosa 50071 

Soya bean meal (10g);  
size (0.4-0.8 cm) 

pH 7.4; 37 °C; 96 h; moisture 
content 50 % (w/v); SC 

165.11  1.719 [85] 

Pseudomonas 
aeruginosa 50071 

Soya bean meal (5g); 
Inducers- casein 
hydrolysate (3.11) % 
(w/v); 
corn steep liquor (3.68) % 
(w/v) 

pH 7.4; 37 °C; 96 h; moisture 
content 40 % (w/v); SC 
 

1.428  0.0148 [86] 

Aspergillus niger Bran of glycine max pH 6.5; 40 °C; 96 h; moisture 
content 70 % (w/v); SC 

17.52±1.43 0.183 [87] 

Serratia marcescens Sesame oil cake pH 7.0 - 7.5; 37 °C;  48 h; 
moisture content 68.64 % 
(w/v); SC   

110.795a 2.308b [165] 

Serratia marcescens 
SB08 

Rice bran (10g ); L-
asparagine (0.01) %; 
yeast extract (0.5) % 

pH 7.0; moisture content 40 % 
(w/v); particle size (0.5 mm);   
30 °C; 36 h 

79.84 a 2.217 b [166] 

Marine Actinomycetes* Soya bean meal (5g); pH 7.0; 37 °C; 96 h;   49.2 - [92] 

Bacillus circulans 
MTCC 8574 

Red gram husk; Bengal 
gram husk; Coconut; 
Ground nut cake; L-
asparagine (0.5) % 

pH 7.0; 37 °C; 24 h; fractional 
factorial central composite 
design (FFCCD); SC 

2322a - [167] 

Fusarium equiseti Soya bean; di potassium 
hydrogen phosphate (0.5) 
%; Manganese (0.01) % 

pH 7.0; 37 °C; 48 h; SC 6.85e 0.142b [168] 

Fusarium equiseti Glucose (0.5 %); 
Ammonium sulphate (0.5 
%); Yeast extract (0.5%) 

pH 7.0; 37 °C; 48 h; moisture 
content 70% (v/w);  particle 
size (3 mm); inoculum volume 
(20%); SC 

8.51e 0.177 b [169] 

*, Production L-asparaginase performed both in SSF and SmF; SC, Static conditions; a, U g-1; b, U g-1 h-1; e, International 
units (IU)  

Table 3: Biochemical properties of some microbial L-Asparaginases 
Microbial Source pH optima Temperature 

Optima (oC) 
Km (M) pI Specific Activity 

(µmol/min/mg) 
Molecular 
Weight 
(kDa) 

References 

Pseudomonas 
aeruginosa 
 

9 37 0.147 x 10-3 -  160 [85] 

Pseudomonas 
stutzeri 

9  37 1.45 x 10-4 6.38 732.3 34 [170] 

Pseudomonas 
fluorescens 

8.0-9.0 - 4.1 x 10-4 4.5 - 70 [171] 

Azotobacter 
vinelandii 

8.6 48 1.1  x 10 -4 - 2.47 84 [43] 

E.coli 7-8 37 1.25 x 10-5 4.9 - 141 [104, 23-
25] 

Serratia marcescens 
 

6.8 - 1.0 x 10-4 5.2 255 171-180 [89, 27] 

Tetrahymena 
pyriformis 

8.6 - 2.2 x 10-3 6.8 - 230 [36] 

Erwinia aroideae 7.5 - 3 x 10-3 6.8 256 155 [77, 172] 
Erwinia carotovora 8 50 1.8 x 10-5 - - 125-145 [67, 173] 
Saccharomyces 
cerevisiae 
Asparaginase I 
AsparaginaseII 

 
8.5 
6.8 

 
- 
- 

 
7.4 x 10 -3  

3.5 x 10 -4 

 
- 
- 

 
- 
- 

 
400 
800 

[174] 

Corynebacterium 
glutamicum 

7 40 2.5 x 10-3 - - 80 [18] 

Cylindrocarpon 
obtusisporum 

7.4 37 1 x 10 -3 5.5 - 216 [97] 

Mycobacteriun phlei 8.8-9.2 - 0.7 x 10-3 - - 126 [107] 
Bacillus coagulans 8.5-9.5 55 4.7 x 10-3 - 10.9 85 [99] 
 Fusarium tricinctum 7.5-8.7 - 5.2 x 10-4 5.18 - 161-170 [109] 
Vibrio succinogenes 
 

7.3 - 4.78 x 10-5 8.74 202 146 [108] 

Proteus Vulgaris 
 

7-8 57 2.6 x 10 -5  
 

5.08  
 

300 - [106] 
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Table 4: Available clinical forms of L-asparaginase 
Source  Marketed by Commercial name Country 
E-coli asparaginase 
 

EUSA Pharama 
 
Ovation pharmaceuticals 
Deerfield, Illinois 
 
Bayer AG, Leverkusen 
 
Sanofi-Aventis Paris 
 
Kyowa Hakka, Tokyo 
 

Kidrolase 
 
Elspar 
 
 
 
 
Crasnitin 
 
 
Leunase 
 
 
Asparaginase Medac 

UK 
 
US 
 
 
 
 
Germany 
 
 
France 
 
 
Japan 

PEGylated form of Native E.coli 
Asparaginase 

Sigma-Tau 
pharmaceuticals Inc., 
Gaithersburg 

Oncaspar MD 

Erwinia Asparaginase EUSA pharma, Oxford Erwinase UK 
    

Note: Some of the preparations are not available in all countries. 
 

Table 5: Assays for determination of L-asparaginase activity 
S.
No 

Assay Substrate used Product 
analyzed 

Principle Remarks References 

1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spectrophotometry 
(Colorimetry) 
 
 
 
 
 
 
 

L-Asparagine 
 
 
 
 
 
 
 
 
 
 
L-Asparagine 
 
 
 
 
 
 
 
 
 
 
 
L-Asparagine 

Ammonia 
Released 
 
 
 
 
 
 
 
 
 
Ammonia 
Released  
 
 
 
 
 
 
 
 
 
 
Aspartate 

The Optical density at 
500nm after the colored 
reaction is measured 
and compared to a 
standard curve prepared 
from solutions of 
ammonium sulphate as 
nitrogen source 
 
 
 
Ammonia produced is 
degraded by glutamate 
dehydrogenase with 
concomitant oxidation of 
beta-NADH; 
disappearance of beta-
NADH is then monitored 
spectrophotometrically 
at 340 nm 
 
 
 
The aspartate 
concentration measured 
spectrophotometricallly 
through coupling with L-
glutamic oxaloacetic 
transaminase and L-
malic dehydrogenase 
 
 
 

 
 

Method involves 
the use of highly 
toxic reagents. 
 Simple and 
quantitative but 
low activities of L-
asparaginase 
enzyme cannot be 
measured 
 
 
Continuous (and 
rather simple) 
detection of 
asparaginase 
activity 
 
 
 
 
 
 
 
Linear results for 
ammonia 
concentrations 
between 0 and 200 
μM. 

[77] 
 
 
 
 
 
 
 
 
 
 
[175] 
 
 
 
 
 
 
 
 
 
 
 
[176] 

2 Fluorometry 
 

L-aspartic 
acid Beta- (7-
amido-4-
methylcoumarin) 
 

7-amino-4-
methylcoumarin 

The excitation and 
emission wavelengths 
of  the released 7-amino- 
4-methylcoumarin are 
measured 
fluorometrically at 
37°C using a 
fluorometer 
 

Rapid assay but 
expensive 
substrate and 
equipment can be 
used monitoring L-
asparaginase 
activity in patients 
during 
L-asparaginase 
therapy. 
  

[177] 
 

Kumar and Sobha / L-Asparaginase from Microbes: a Comprehensive Review 



ABR Vol 3[4] 2012 ~ 151 ~           © SOE, INDIA 

3 Titrimetry 
 (Direct 
Nesslerization) 

Asparagine Ammonia 
Released 

The ammonia released is 
quantitatively measured 
by titrations. 

Good 
reproducibility is 
achieved but the 
method requires 
meticulous care 
and disparate 
results are 
obtained from 
different labs 
analyzing the same 
samples 
 
 

[178] 

4 Kinetic enzymatic 
method (gas 
sensing electrode) 
 

Asparagine Ammonia 
Released 

The ammonia released is 
measured using an 
ammonia 
gas-sensing electrode 
 

Expensive but very 
accurate and 
instantaneous  
quantification of 
ammonia  

[179] 

5 Paper 
electrophoresis 
 

[14C]L-
asparagine 
 

[14C]L-aspartic 
acid 
 

L-Aspartate was well 
separated from L-
asparagine by 
electrophoresis. the 
section of the strip 
bearing aspartate was 
cut out and counted in a 
scintillation counter  
 

Good sensitivity 
but Time 
Consuming 

[180-181] 
 
 
 
 

6 Chromatography [14C]L-
asparagine 
 

[14C]L-aspartic 
acid 
 

The conversion of  
[14C]L-asparagine to 
[14C]L-aspartic 
acid is followed by rapid 
chromatography on ion 
exchange paper 
 

Detection of as 
small as a few 
pmoles of [14C] L-
aspartic 
Acid. Therefore 
very less costly 
substrate required. 
But the method is 
Time consuming 
and not continuous 

[23] 
 
 
 
 
 
 

7 Conductimetry asparagine or 
aspartate 
hydroxamate 

ammonia 
and/or 
aspartate 

The increase of 
conductivity due to the 
production of ammonia 
and/or aspartate in the 
reaction mixture 
containing  cell-free 
extract and asparagine 
or aspartate 
hydroxamate 

Measurement is 
simple because 
conductivity is 
linear with time 
and enzyme 
concentration and 
it follows Michaelis 
kinetics 

[182] 

 
CONCLUSIONS  
Optimal formulation and dosage of asparaginase in the treatment of ALL is still to be understood 
thoroughly. Critical minimum value of serum asparaginase for effective control of malignancy has 
to be established. Literature suggests that a serum level of asparaginase greater than 100 IU l-1 
corresponds to depletion of asparaginase below the level of quantification and is therefore 
considered the target trough asparaginase level [162]. However, some evidence points out that 
trough asparaginase level of below 50 IU l-1 can also result in serum and CSF asparagine depletion. 
These revelations prompt a thorough investigation to ensure administration of right doses of the 
drug and thereby minimize the side effects [113]. Also route of administration (IM or IV) is to be 
evaluated further for better outcomes of the treatment. Patients should be screened for silent 
hypersensitivity and if necessary should be switched over to second-line and third–line therapy. 
For this, effective monitoring of asparaginase levels should be adopted. At present, only 3 main 
preparation of asparaginase are used in treatment protocols (E-coli asparaginase, its PEGylated 
form and Erwinia asparaginase) although a lot of studies on different other sources of asparaginase 
have yielded encouraging outcomes. Further studies and regulatory approvals will enable the 
introduction of new asparaginase drugs with potential benefits to patients. Measurement of 
Triglycerides during the course of asparaginase therapy is strongly recommended to avoid 
complications. 
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