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ABSTRACT 
Bacteriocins are ribosomally synthesized protein complexes or peptides produced by certain bacteria that have 
antimicrobial properties and antagonistic bacterial activity specific to competing bacteria. Bacteriocins range from 
simple protein to high molecular-weight complexes, where the active moiety of which is generally a protein in nature. 
The genetic determinants of most bacteriocins are located on native bacterial plasmids and notable few are located on 
chromosomes. Rhizobium spp. are Gram-negative soil bacteria that play important roles in nitrogen fixation of 
leguminous plants. Bacteriocins produced by different strains of Rhizobium are known to impart antagonistic effects 
against other closely related strains. In this review, we summarize previous work published on bacteriocins produced by 
Rhizobium spp; outline the prevalence of bacteriocinogenic Rhizobium spp. and discuss the classification, structure and 
genetic determinants and mode of action of bacteriocins. Furthermore, applications of bacteriocin producing Rhizobium 
spp. are discussed with a focus on their potential roles in inter-specific and intra-specific competition. Finally, future 
studies are highlighted that explore aspects of genetic manipulation for increased production and avenues to broaden 
the antimicrobial spectrum of bacteriocins.   
Keywords: Bacteriocin, Rhizobium, antagonism, Rhizobiocins, Bacteriocin like inhibitory substances (BLIS), intra-
specific and inter-specific competition  
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INTRODUCTION 
Legume Rhizobium symbiosis is a well-established plant microbe association. Rhizobiumspp. have the 
ability to colonize root nodules of leguminous plants and are routinely applied as biofertilizers. These 
microbial bio-inoculants have the ability to compete with native microflora and successfully colonize root 
nodules. However, inoculated Rhizobium strains often fail to compete with indigenous rhizobia and fail to 
increase nodulation [22]. Bacteriocins are among the major factors affecting competition among rhizobia 
[40]. Bacteriocins are inhibitory agents that cause antagonism among closely related strains. Bacteriocins 
have a narrow spectrum of activity and are proteinaceous in nature, which differentiates them from 
antibiotics [59].  
Almost 100 years ago, bacteriocins produced by Escherichia coli V were first identified as heat-labile and 
toxic to E. coli S. These bacteriocins were named colicin to identify the producing species [19]. In 
subsequent years, bacteriocins have been found in all types of bacteria and even found in some species of 
Archaea [43]. Bacteriocins can be defined as ribosomally synthesized proteinaceous toxins produced by 
Gram-positive and Gram-negative bacteria, which inhibit the growth of closely related bacterial species 
and strains [7]. Bacteriocins are classified in terms of size (small, medium and large), microbial target, 
mode of action, and release and immunity mechanisms [8].  
Extensive work has focused on, for instance, lactic acid bacteria (LAB) bacteriocin genetics, biosynthesis, 
mode of action and, classification. Applications of LAB bacteriocins include use as biopreservatives in 
food. Nisin bacteriocin produced by Lactococcus spp. was approved for use in food by the FDA in 1988 [4]. 
Presently, this approach is widely used as a biopreservative in the cheese making industry [9]. 
Comparatively, little work has been conducted on Gram-negative bacteria, Rhizobium spp, as bacteriocin 
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producers. In this study, we attempt to compile all documented literature and potential applications of 
Rhizobium bacteriocins. 
 
PREVALENCE OF RHIZOBIUM BACTERIOCINS 
The first description of bacteriocin production by Rhizobium spp. was published by Roslycky [47]. 
Bacteriocin-producing strains have been identified in R. leguminosarum bv. trifolii [54, 55, 2, 29, 61], R. 
japonicum [21], R. leguminosarum bv. viciae [25, 68, 6], Rhizobium lupine (Lotz and Mayer 1972), R. cicer 
[55, 1], R. meliloti [60] and R etli [44]. Bacteriocins produced by Rhizobiumspp. have been characterized 
as phage-like [54, 21] and having antibiotic properties [55, 61]. Many rhizobial species including 
Rhizobium leguminosarum and Bradyrhizobiumspp.(bacteriocinogenic strains) produce bacteriocins, 
designated as rhizobiocins [58, 25, 17].  
An antibacterial compound was reported to be a rhizobiocins by Roslycky [46, 47] who screened 136 
strains of Rhizobium spp., belonging to various cross-inoculation groups for the production of 
bacteriocins. This researcher observed production of meliloticin by two strains of R. meliloti, trifolicin by 
three strains of R. trifolii, phaseolicin by 6 strains, japonicin by 13 strains, and lupinicin by three strains. 
Schwinghamer [54] screened 41 strains of R. trifolii and 270 isolates from clover nodules for intra-strain 
antagonism. This researcher observed 35% of the cultures produced antibiotics towards two indicator 
out of six strains used for intra-strain antagonism experiments, and 8% of the cultures were found to 
produce bacteriocin-like substances. 
R. leguminosarum bv. viceae strain Z25, an inoculant used under field conditions, was reported to be one 
of the most effective isolates in antagonism experiments. Broad bacteriocinogenic activity on rhizobia 
was demonstrated by measuring nodule dry matter accumulation and total ARA (Acetylene-reducing 
activity) [45]. This strain exhibited such properties as non-dialysability, sensitivity to heat, and 
proteolytic enzymes, suggesting a proteinaceous nature. Rhizobium GR4 in sterilized liquid broth and 
sterilized soil was observed to produce bacteriocins against the standard strain Rhizobium S24 of Vigna 
[1]. 
Bradyrhizobium and Rhizobium (bacteriocinogenic rhizobial strains) nodulating Green Gram and their 
antagonistic interaction with sensitive strains (Rhizobium strains VRF76) under co-growth conditions 
was reported by Goel et al.[17]. The effect of bacteriocin production on competitive ability for nodulation 
on Green Gram was studied by co-inoculation of a bacteriocin-producer strain (VRFlO and VRF76) with a 
sensitive strain under sterile conditions. Bacteriocin producer strain VRFlO had more nodules than 
sensitive strain VRF76, suggesting their role in nodulation competitiveness.  
Rhizobium leguminosarum bv. viciae strain LC-31 produced medium-sized bacteriocins which inhibited 
some strains of R leguminosarum bv. viciae and Agrobacterium spp.. This bacteriocin-producer was among 
the ten strains of Rhizobium, Bradyrhizobium and Agrobacterium- used to study antagonism among 
mixtures of bacterial strains of Rhizobiaceae studied by Hafeez et al. [22]. A 50 KDa bacteriocin 
polypeptide was partially purified by chloroform and ammonium sulfate and assayed by SDS-PAGE.  
Rhizobium isolated from rhizospheric soil of Horse Gram was reported to be bacteriocinogenic by 
Edulamundi et al. [11]. Thirty-two isolates produced bacteriocins against the remaining isolates. Two 
isolates, named HGR-4 and 9 exhibited the largest inhibition zone among all isolates. Bacteriocin 
production by Rhizobium from rhizosphere soil near non-leguminous plants (Lupinus albus, Triticum 
aestivum and Zea mays)also plays an important role in inter-specific competitions [3].  
Two inhibitory strains of Rhizobium spp. STM 1081 and STM 1823 produced thermolabile bacteriocins. 
These bacteriocins were resistant to acidic pH, but weresensitive to basic pH, organic solvents, and 
proteolytic enzymes. The antimicrobial activity of these strains against soil bacteria Clostridium spp., 
Vibrio spp. and Enterobacter spp. was detected by Warda et al. [66]. 
Resistance to bacteriocins has also been reported. Lovisohn et al. [36] observed bacteriocinogenic 
properties and resistance of producer strains to their own bacteriocins. The resistance of the producer 
strains was not absolute, as certain strains were reported to be sensitive to a higher concentration of 
their own produced bacteriocins. 
 
CLASSIFICATION OF RHIZOBIUM BACTERIOCINS 
Rhizobiumspp. produces bacteriocins, which have been grouped as small, medium and large based on 
their estimated sizes and diffusion characteristics [25, 53] (Table 1). 
Fast-growing Rhizobium produce small-sized bacteriocins that were observed to be chloroform-soluble 
and heat-labile, and they are resistant to proteolytic enzymes and diffuse through cellophane. The 
presence of a bacteriocinogenic plasmid is detected in these Rhizobium spp. and is transmittable at 
frequencies of 10-1 to 10-2. They bacteriocins have molecular masses of less than 2,000 daltons [25, 64, 53, 
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21]. They were shown to be acylated homoserine lactone (AHL) compounds related to quorum-sensing 
molecules [49, 20]. They are often called quorum-sensing pheromones and auto-inducers (induce genes 
encoding enzymes involved in their own synthesis). These bacteriocin diffuse rapidly in an agar plate 
containing sensitive bacteria and cause large inhibition zones.  
A property of AHL molecules is growth inhibition of Rhizobium bacteria that harbor conjugative Sym 
plasmid pRL1JI. They play an important role as inducers of genes that are involved in cellularfunctions 
and in inter-cellular communication of Gram-negative bacteria [71]. Another small bacteriocin, which has 
been well-characterized in R. leguminosarum strain T24, is trifolitoxin [5, 52, 61, 62, 63]. This bacteriocin 
is a short peptide [5] similar to microcins and has been shown to be bacteriostatic to certain Rhizobium 
strains. It is used to enhance competitiveness of inoculant strains. 
 

Table 1: Classification of bacteriocin on the basis of their size 
S. No Bacteriocin 

Category 
Producer 

Species 
Reference 

1. Small R. leguminosarum 
 
 
 
 
 
R. trifolii 

Schwinghamer and Brockwell [53],  
Gross and Vidaver [21], Hirsch [25],  
Van Brussel et al. [64], Gray et al. [20],  
Schripsema et al. [49], Goel et al. [17],  
Yajima et al. [71], Sridevi and Mallaiah [58]. 
Schwinghamer and Belkengren [52],  
Triplett and Barta [62], Triplett [60],  
Triplett [61]. 

2. Medium R. leguminosarum  
bv. viciae 
R. japonicum 

Hirsch [25], Rodelas et al. [45],  
Oresnik et al. [40], Wisniewski [67],  
Hafeez et al. [21]. 
Roslycky [46] 

3. Large R. lupine Lotz and Mayer [35],  
Schwinghamer et al. [54] 

4. Bacteriocin like 
inhibitory 
substances (BLIS) 

R. trifolii 
 
 
 
R. japonicum 

Schwinghamer [50],  
Schwinghamer et al. [54],  
Schwinghamer [51],  
Schwinghamer and Brockwell [53],  
Joseph et al. [28], Hodgson et al. [26],  
Triplett and Barta [62], Warda et al. [66]. 
Gross and Vidaver [21] 

5. Rhizobiocins Rhizobium spp. Goel et al. [17], Sridevi and Mallaiah [58] 

 
Comparatively, fewer strains produce medium-sized bacteriocins, suggested by cross-resistance patterns 
[25, 67]. Bacteriocins produced by Rhizobium leguminosarum bv viciae are generally bactericidal, heat 
labile and retained by cellophane. They are of intermediate size and have a sedimentation coefficient 
greater than 3.7S [25, 67]. These bacteriocins have shown different levels of sensitivity to proteases, 
trypsin, lysozymes, RNase I, and DNase I [51, 21, 26]. They have broad bacteriocinogenic activity. These 
bacteriocins can be produced in minimal or complete media, under a wide range of incubation 
temperatures using C and N as sole compounds. These bacteriocins produce a 2-10 mm wide inhibitory 
zone, which is more stable at alkaline pH [25, 45]. Roslycky [46] reported medium-sized bacteriocins to 
be true bacteriocins, i.e plasmid encoded. Oresnik et al.[40] detected bacteriocins similar to the RTX toxin, 
encoded on plasmid pRL1JI. Its protein nature is similar to the RTX protein (Calcium dependent 
cytolysins such as hemolysin and leukotoxin). Their bacteriocinogenic activity is enhanced by Ca2+ and 
the mode of action is via membrane depolarization [31]. 
Large-sized bacteriocins resemble defective bacteriophages of Proteus mirabilis and Proteus vulgaris [35, 
40, 25, 53]. Electron microscopy of these bacteriocins revealed the presence of 123 nm long particles 
which resemble tails of T-even bacteriophages. The particles were not found attached to phage heads and 
were regarded as incomplete, thus they were named INCO particles [35, 54]. 
Rhizobium trifolii has been shown to produce bacteriocin-like inhibitory substances (BLISs) by 
Schwinghamer [50], Schwinghamer et al.[54], Schwinghamer [51], Schwinghamer and Brockwell [53], 
Joseph et al. [28] Hodgson et al. [26], Triplett and Barta [62], Warda et al. [66]. The bacteriocins of 
interest filtered through 0.01µm and did not produce plaques. Bacteriocins produced by these strains 
were in competition with soil bacteria (rhizobia and non-rhizobia) and were associated with soybeans 
[51]. Rhizobium japonicum has been shown to also produce BLIS by Gross and Vidaver [21]. These 
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particular BLIS passed through dialysis membranes and are resistant to heat and proteolytic enzymes. 
They produce inhibitory zones of 1 to 12 mm. They are sub-divided into the following categories: Group I, 
which has adoubling time of less than 14 min, have mucoid type growth, and a inhibitory zone of 2 to 9 
mm, Group II, which has a doubling time and growth type similar to Group I, but has decreased culture 
viability compared with Groups I and III. Group III is easily distinguishable by their dry colony 
morphology, they exhibit long doubling time, but they lack bacteriocin production. 
Bacteriocin produced by Rhizobium spp.. was termed as rhizobiocins by Goel et al. [17], and Sridevi and 
Mallaiah [5]. The bacteriocin production was detected after 48 hours of incubation and reached maximum 
levels after 96 hours of incubation. Bacteriocins produced by Rhizobium spp.. were observed to be 
sensitive to protease at concentration of 25 µgmL-1, indicating its proteinaceous nature (Sridevi and 
Mallaiah 2008). Bacteriocins from cicer-Rhizobium were sensitive to protease and insensitive to DNAase 
and RNAase, indicating that they are not nucleoproteins (Nirmala et al. 2001). Bacteriocin activity was 
observed between 30 and 70°C [58]. 
 
STRUCTURE OF BACTERIOCINS AND THEIR MODE OF ACTION 
The Gram-negative bacterium Rhizobium leguminosarum produces small bacteriocins, which form 
symbiotic nitrogen-fixing root nodules on leguminous plants. The structure was elucidated by Schripsema 
et al. [49] as N-(3R-hydroxy-7-cis-tetradecanoyl) L-homoserine lactone through inverse-detected carbon 
proton correlation spectrum methods. The spectrum displayed almost all expected signals due to two or 
three-bond couplings. The structure contains two asymmetric carbon atoms, one of which is in the 
homoserine lactone motif, which can be of D or L configuration (R or S, respectively). The other 
asymmetric carbon bears the ß-hydroxyl moiety in the fatty acid chain. Any of four possible 
stereoisomers or a mixture any of the four are possible. The configuration of both asymmetric carbon 
atoms was determined by the chiral solvating agents S-(1) and R-(2)-2,2,2-trifluoro-1-(9-anthryl)-
ethanol. 
R. leguminosarum 248 has been reported to produce medium-sized bacteriocins by Oresnik et al. [40]. 
Characterization of the pRL1JI plasmid indicated that there is only gene present, and expression of the 
gene reveals bacteriocin activity. Medium-sized bacteriocin is related to RTX-type proteins, which include 
calcium-dependent cytolysins, such as hemolysin and leukotoxin (Welch 1990). It contains a peptide 
sequence repeated up to 18 times within the protein. Additionally, a novel 19 to 25 amino acid motif was 
detected every 130 amino acids. Bacteriocin activity in the culture supernatants was associated with the 
presence of approximately a 100 kDa protein, which exhibited calcium dependence in R. leguminosarum. 
Nodulation competition experiments with R. leguminosarum wild types and strain 248 show the presence 
of bacteriocin activity in strain 248, which corresponds to its competitiveness. The RTX families of toxins 
are pore-forming cytolysins [70] that cause membrane depolarization [31]. The protein is produced in 
culture supernatants and there is no specific transport system. Bacteriocins are secreted by a general 
pathway and released by spontaneous cell lysis. The secretion and transportation mechanism of 
Rhizobiocin 248 are unclear. 
Electron microscopy performed by Lotz and Mayer [35] on the large-sized bacteriocins of Rhizobium 
lupini revealed the presence of 123 nm long particles which resemble the tails of T-even bacteriophages. 
The particles were not found attached to phage heads. They were regarded as incomplete and were 
accordingly named INCO particles. INCO particles comprise a core, enveloped by a contractile sheath. One 
end of the sheath is attached to a base plate, to which six fibers (32 nm in length) are attached. These 
fibers connect the base plate of an adsorbing particle to the cell surface. As INCO particle cores are empty, 
specific adsorption of the particles to the bacterial surface is sufficient to irreversibly inactivate sensitive 
cells. Dimensions of INCO particles with an (a) extended and (b) contracted sheath are given in 
nanometers. INCO particle fibers are folded up against the extended sheath and its adsorption is triggered 
by a specific contact between the base plate of a particle and the cell surface, leading to structural changes 
of the plate. These structural changes of the base plate result in the downward orientation of the fibers, 
which attach to specific receptors of the cell wall. The base plate is then bound to the cell surface by the 
fibers. This contraction results in the penetration of the cell wall by the INCO core. The INCO particles 
possess bactericidal activity that inactivates the cells upon their contact with the bacterial surface. 
 
GENETICS OF BACTERIOCIN PRODUCTION 
Bacteriocins are agents encoded by genetic material located on plasmids, with the purpose of killing or 
inhibiting different or closely related species [7]. The genes encoding bacteriocin production and 
immunity are organized in epichromosomal operon clusters. However, certain genes are encoded on 
chromosomes [8, 38, 48]. 
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Frederiq and Botz-Bareau [13, 14] initially suggested that the location of genetic elements that encode 
bacteriocins genes resides in an extra chromosomal genetic element. This conclusion was dependent on 
genetic analysis of various E. coli F+ x F- mating experiments, in which there were no linkages between 
any of the several chromosomal markers and the determinants of colicin production. Similar conclusions 
were made by transferring bacteriocinogenic determinants in E. coli by 14C- labeled DNA [57]. The direct 
demonstration that the colicin determinant resided on a plasmid was also reported by Dewitt and 
Helenski [10].  
Treatment with sodium dodecyl sulphate (SDS) eliminated bacteriocin production from Rhizobium trifolii 
strain B1 [72]. Conjugal transfer of bacteriocinogenic determinants showed that these determinants were 
self-transmissible at frequencies of 10-1 to 10-2 [25]. This finding indicated that bacteriocin production in 
Rhizobium is controlled by gene expression from plasmid DNA. These plasmids mobilized chromosomal 
genes at the frequencies of 10-7 to 10-8, which further suggested that these plasmids were conjugative 
[25]. 
High frequency production of medium-sized bacteriocins from three different Rhizobium leguminosarum 
strains was demonstrated by Hirsch, [25]. Three bacteriocinogenic plasmids found in field isolates 248, 
306 and 309 were named pRL1JI, pRL3JI and pRL4JI, respectively. Hirsch [25] and Brewin et al. [6] stated 
that these plasmids encode medium-sized bacteriocins and repress the production of small bacteriocins. 
These researchers have the ability of transfer between strains at high frequencies and mobilize 
chromosomal genes at low frequencies and cannot co-exist within the same cell without experiencing 
inter-plasmid recombination. Hirsch [25] observed a loss of ability to produce small bacteriocins due to 
repressive activity by trans-conjugated plasmids. 
High frequencies of medium-sized bacteriocin production are attributed to conjugative bacteriocinogenic 
plasmids. No transfer regarding the ability to produce small bacteriocins was observed. Loss of 
production of small bacteriocins upon introduction of medium-sized bacteriocin plasmids was detected 
by Hirsch [25] which was attributed to the incompatibility between plasmids. Plasmid pRL1JI was found 
to carry symbiotic gene functions, capable of restoring mutations to a wild-type phenotype [6]. 
 
APPLICATIONS OF BACTERIOCIN 
As stated earlier, bacteriocins are highly specific anti-bacterial proteins produced by strains of bacteria 
that are active against different strains of the same or related species [16]. Bacteriocin production plays 
an important role in inter-specific and intra-specific competition [11, 3, 66]. This has implications in the 
utilization of multiple strains or species to be used as bio-fertilizer. Bacteriocin-producing rhizobial 
strains have a competitive advantage as described in mixed culture [53]. Several innovative approaches 
were suggested by Schwinghamer and Belkengren [52], Hodgson et al. [26] and Triplett [61] to maximize 
nitrogen fixation by (1) using an inoculum consisting of a bacteriocin-resistant nitrogen fixing strains (2) 
using a bacteriocin producer which also fixes nitrogen, and (3) transfer of the genetic components for 
bacteriocin production to an efficient nitrogen fixer. Mixed cultures helped to improve legume inoculant 
potency, competitiveness and survival after inoculation [66]. Rhizobium leguminosarum bv. viciae strain 
LC-31 used as phosphate solubilizer bacteria (PSB), is added in bio-fertilizer, and inhibits the growth of 
Rhizobium and Agrobacterium spp.. [22]. Rhizobium leguminosarum produces a RTX-type toxin of 
approximately 100KDa which provides a competitive advantage in terms of nodule occupancy. Various 
studies have confirmed the role of Trifolitoxin, peptide bacteriocins produced by Gram-negative bacteria 
in competition with closely related species [44 24]. 
Bacteriocins are of interest as they affect bacterial population dynamics, survival and virulence [43, 15]. 
Certain bacteriocins have additional regulatory functions [23, 12, 34, 30]. Bacteriocins are exploited for 
their use to combat bacterial infections, e.g., in plant disease control caused by bacteria of the same or 
related groups [37]. Some bacteria associated with plants produce large bacteriocins that inhibit plant 
pathogenic bacteria [41]. Serracin, a phage tail-like bacteriocin was reported to inhibit Erwinia 
amylovora, the fire blight pathogen [27]. Lavermicocca et al. [33] reported olive-knot disease reduction by 
Pseudomonas syringae pv. syringae bacteriocins. Xanthomonas campestris pv.glycines produce glycinecin 
A, a bacteriocin that demonstrates bactericidal activity on phytopathogenic Xanthomonas campestris pv. 
vesicatoria [42]. 
 
FUTURE PROJECTIONS 
Bacteriocins cause antagonism among closely related bacterial species and their production plays an 
important role in inter-specific and intra-specific competition. Bacteriocinogenic Rhizobium spp. alone or 
in different combinations has implications in the sustainability of agriculture, including their possible use 
as a cheap biofertilizer. These strains can be used to enhance competitiveness and survival after 
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inoculation. Bacteriocins produced by Gram-positive bacteria have yielded promising results as food bio-
preservatives, exhibiting relatively narrow activity spectra. However, the scientific community is still in 
the initial stages of exploring bacteriocins produced by Gram-negative Rhizobiumspp.. Manipulation of 
genetic determinants can pave the way for greater bacteriocin production.  The synthetic routes have 
provided a hurdle in the widespread usage of bacteriocins, as it is costly to obtain them in purified form. 
Fermentative production of bacteriocins in natural media can provide economically feasible products. 
Information about structure can be used to determine the mode of action of bacteriocins.  
Bacteriocinogenic Rhizobium, usedalone or in mixtures, can contribute to agriculture’s need for more 
sustainable, effective and cheap bio-fertilizer production, not only as nitrogen fixers but also as bio-
control agents. They can be used as a tool for plant disease control and potentially address current threats 
posed by multi-resistance bacterial pathogens. Bacteriocinogenic Rhizobium spp.may also be used in 
conjuction with transgenic crop plants that have nitrogen fixing and biocontrol capabilities. 
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