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ABSTRACT 

Selective estrogen receptor degraders (SERDs) have gained attention for their dual mechanism of action: they not only 
inhibit estrogen receptor signaling but also degrade the receptor itself, reducing ER expression levels. In this study, we 
conduct a comprehensive in silico screening of selected indole derivatives to evaluate their potential as selective estrogen 
receptor degraders. Using ADMET analysis and molecular docking techniques, we aim to identify indole derivatives with 
optimal pharmacokinetic properties and strong binding interactions with ERα, potentially advancing the development of 
novel SERDs for effective breast cancer therapy. Mostly all the compounds exhibited optimal drug-likeness properties and 
displayed good ADME parameters. All the designed compounds displayed either toxicity class III to V. From molecular 
docking, it was observed that many molecules displayed better binding free energy than native ligand and formed at 
least one conventional hydrogen bond with target enzyme. Native ligand displayed -8.4 kcal/mol binding affinity and did 
not formed any kind of conventional hydrogen bond. MDT-32, MDT-39, MDT-43, MDT-44, MDT-45, MDT-47, MDT-54, 
MDT-58, MDT-59, and MDT-60 had exhibited -9.4, -8.9, -9.2, -9, -9.2, -9.3, -9, -9.2, -9.1, -9 kcal/mol of binding free 
energies, respectively. Therefore, from present investigation, we have selected MDT-32, MDT-39, MDT-43, MDT-44, MDT-
45, MDT-47, MDT-54, MDT-58, MDT-59, and MDT-60 for the wet lab synthesis and biological evaluations. From present 
investigation, it was concluded that, these molecules possess potential to be developed as potent SERD for the treatment 
of cancer. 
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INTRODUCTION  
Breast cancer remains one of the most prevalent cancers worldwide, accounting for significant morbidity 
and mortality in women. Estrogen receptor (ER)-positive breast cancer, driven by estrogen signaling, is 
the most common subtype, comprising nearly 70% of all breast cancer cases. Estrogen receptors, 
particularly ERα, play a crucial role in tumor cell proliferation, making them a prime target for 
therapeutic intervention. Current treatment strategies for ER-positive breast cancers include selective 
estrogen receptor modulators (SERMs), aromatase inhibitors, and selective estrogen receptor degraders 
(SERDs). While these therapies have demonstrated efficacy, resistance to standard treatments and 
adverse side effects highlight the need for new SERDs with improved efficacy and safety profiles. 
Selective estrogen receptor degraders (SERDs) have gained attention for their dual mechanism of action: 
they not only inhibit estrogen receptor signaling but also degrade the receptor itself, reducing ER 
expression levels. This mechanism can potentially overcome limitations of SERMs and address resistance 
in ER-positive cancers. However, limitations in currently available SERDs, such as poor bioavailability and 
off-target effects, drive the pursuit of novel compounds with optimized properties. Indole derivatives, a 
class of heterocyclic compounds with a wide range of biological activities, have shown promise as 
scaffolds for developing effective SERDs due to their structural compatibility with ER binding pockets. 
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In recent years, in silico methods have become essential in early-stage drug discovery due to their 
efficiency and cost-effectiveness. ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) 
analysis and molecular docking studies, as part of in silico screening, offer valuable insights into a 
compound's drug-likeness and binding affinity with target proteins, helping streamline the search for 
promising candidates. In this study, we conducted a comprehensive in silico screening of selected indole 
derivatives to evaluate their potential as selective estrogen receptor degraders. Using ADMET analysis 
and molecular docking techniques, we aim to identify indole derivatives with optimal pharmacokinetic 
properties and strong binding interactions with ERα, potentially advancing the development of novel 
SERDs for effective breast cancer therapy. 
 
MATERIAL AND METHODS 
Designing of Derivatives 
The derivatives were designed using (E)-N-((2-(4-(1H-imidazol-1-yl)phenyl)-1H-indol-3-yl) methylene) 
pyridin-2-amine derivatives. The derivatives from MDT-31 to MDT-60 were designed, the different 
substitutions are depicted in Table 1. 

Table 1. The structure of parent nucleus and different substitution used for the designing 

 
Derivatives Code ―R1 ―R2 
MDT-31 ―4-COOH ―H 
MDT-32 ―4-fluoro ―H 
MDT-33 ―4-bromo ―H 
MDT-34 ―4-chloro ―H 
MDT-35 ―4-iodo ―H 
MDT-36 ―4-nitro ―H 
MDT-37 ―4-methoxy ―H 
MDT-38 ―4-isopropyl ―H 
MDT-39 ―4-trifluoromethoxy ―H 
MDT-40 ―4-methyl ―H 
MDT-41 ―4-methylthio ―H 
MDT-42 ―3,4-dimethoxy ―H 
MDT-43 ―3,4-dimethyl ―H 
MDT-44 ―3-methyl-4-chloro ―H 
MDT-45 ―2-methylthio ―H 
MDT-46 ―4-COOH ―OCH3 
MDT-47 ―4-fluoro ―OCH3 
MDT-48 ―4-bromo ―OCH3 
MDT-49 ―4-chloro ―OCH3 
MDT-50 ―4-iodo ―OCH3 
MDT-51 ―4-nitro ―OCH3 
MDT-52 ―4-methoxy ―OCH3 
MDT-53 ―4-isopropyl ―OCH3 
MDT-54 ―4-trifluoromethoxy ―OCH3 
MDT-55 ―4-methyl ―OCH3 
MDT-56 ―4-methylthio ―OCH3 
MDT-57 ―3,4-dimethoxy ―OCH3 
MDT-58 ―3,4-dimethyl ―OCH3 
MDT-59 ―3-methyl-4-chloro ―OCH3 
MDT-60 ―2-methylthio ―OCH3 
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In silico AMDET Screening 
Mol Inspiration, a free service for the online chemistry community, provides access to molecular metrics 
like logP, polar surface area, number of hydrogen bond donors and acceptors (GPCR ligands, kinase 
inhibitors, ion channel modulators, nuclear receptors), and bioactivity score prediction for the most 
significant drug targets. The SwissADME online tool may be used to compute physicochemical descriptors 
and predict ADME parameters, pharmacokinetic properties, drug-like nature, and medicinal chemistry 
friendliness of one or more small molecules to assist in drug development. Utilizing mol inspiration 
(https://www.molinspiration.com/) and SwissADME servers (http://www.swissadme.ch/), Lipinski rule 
of five and pharmacokinetic features of designed derivatives were investigated[1–4]. Toxicity prediction 
is an important phase in the development of novel medications. The use of computational toxicity 
estimations as opposed to animal toxic dose assessments may reduce the number of animal 
investigations. Toxicological endpoints, including acute toxicity, liver toxicity, cell death, carcinogenicity, 
mutation, immunotoxicity, unfavorable outcomes (Tox21) pathways, and toxicity targets are all covered 
in ProTox-arsenal II's of 33 different toxicity endpoint prediction models. This incorporates (fragment 
similarity-based CLUSTER cross-validation) machine learning as well as molecular similarity and 
fragment propensity. Utilising the freely available web server ProTox-II, an in silico assessment of the 
toxicity potential of designed derivatives was conducted (http://tox.charite.de/protox_II)[5]. 
Molecular Docking 
Molecular docking is a fundamental aspect of computer-assisted drug discovery and structural molecular 
biology. Using a method known as "ligand-protein docking," scientists may foretell how a ligand will 
interact with a protein whose three-dimensional structure is already known. A precise scoring system for 
dockings in high-dimensional areas is essential. One may do virtual screening on a large library of 
compounds, grade the results, and propose structural ideas of how the ligands block the target, which is 
highly valuable in lead optimization[6–10]. Following an initial screening process utilizing in silico 
ADMET analysis, the selected molecules underwent subsequent molecular docking studies. In order to 
achieve further optimization, the derivatives underwent binding affinity studies with the target enzyme. 
All the selected compounds and the native ligand were docked against the Estrogen Receptor Alpha (PDB 
Title: A Novel Oral Selective Estrogen Receptor Down-regulator, AZD9496, drives Tumour Growth 
Inhibition in Estrogen Receptor positive and ESR1 Mutant Models) using Autodock vina 1.1.2 in PyRx 
0.8[11]. ChemDraw Ultra 8.0 was used to draw the structures of the compounds and native ligand (mole. 
File format). All the ligands were subjected for energy minimization by applying Universal Force Field 
(UFF)[12]. The crystal structure of the enzyme with PDB ID: 5ACC was obtained from RCSB Protein Data 
Bank (PDB) (https://www.rcsb.org/structure/5ACC). Discovery Studio Visualizer (version-19.1.0.18287) 
was used to refine the enzyme structure, purify it, and get it ready for docking[13]. A three-dimensional 
grid box with an exhaustiveness value of 8 was created for molecular docking[11]. BIOVIA Discovery 
Studio Visualizer was used to locate the protein's active amino acid residues. The approach outlined by 
Khan et al. was used to perform the entire molecular docking procedure, identify cavity and active amino 
acid residues[14–20]. Figure 1 shows the revealed cavity of enzyme with the native ligand. 

 
Figure 1. The 3D ribbon view of estrogen alpha receptor with native ligand (AZD9496) present in 

ligand binding domain 

https://www.molinspiration.com/)
http://www.swissadme.ch/),
http://tox.charite.de/protox_II)
https://www.rcsb.org/structure/5ACC).
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RESULTS AND DISCUSSION 
In silico ADMET Analysis 
The results of ADMET analysis are tabulated in Table 2 to 7. Lipinski's Rule of Five stands as a pivotal 
guideline in modern drug discovery, providing a concise set of criteria to assess the drug-likeness of small 
molecules based on their physicochemical properties. Introduced by Christopher A. Lipinski in 1997, this 
rule outlines four key parameters—molecular weight, lipophilicity, hydrogen bond donors, and hydrogen 
bond acceptors—to identify compounds with optimal absorption, distribution, metabolism, and excretion 
profiles. By adhering to these principles, researchers can efficiently filter compound libraries, reduce 
attrition rates, facilitate rational drug design, and integrate computational methods into the drug 
discovery process. Lipinski's Rule of Five serves as a cornerstone principle, guiding medicinal chemists in 
selecting and optimizing drug candidates with the highest probability of success, ultimately accelerating 
the translation of promising compounds from the laboratory to the clinic. Lipinski's Rule of Five outlines 
four key criteria to assess the drug-likeness of small molecules: molecular weight ≤ 500 Daltons, 
lipophilicity (LogP) ≤ 5, hydrogen bond donors ≤ 5, and hydrogen bond acceptors ≤ 10. These criteria 
serve as fundamental guidelines for evaluating a compound's potential for favorable absorption, 
distribution, metabolism, and excretion (ADME) profiles, crucial determinants of a drug's efficacy and 
safety. By adhering to these principles, researchers can efficiently screen compound libraries, prioritize 
molecules with optimal physicochemical properties for further development, and ultimately accelerate 
the drug discovery process[3,4,21]. Here in present investigation, fortunately none of the molecule 
displayed any major violation of Lipinski rule of five which indicates good oral bioavailability of the 
developed molecules. 
In drug discovery, the Pfizer Rule, GSK Rule, Golden Triangle, and Chelator Rules represent critical 
guidelines that aid in the identification and optimization of lead compounds with desirable 
pharmacological properties. The Pfizer Rule and GSK Rule focus on molecular properties such as 
molecular weight, lipophilicity, and the number of hydrogen bond donors and acceptors, helping 
researchers prioritize compounds with optimal drug-like characteristics. The Golden Triangle concept 
emphasizes the balance between potency, selectivity, and pharmacokinetic properties, guiding the design 
of compounds that exhibit both therapeutic efficacy and favorable ADME profiles. Additionally, the 
Chelator Rules provide guidelines for the rational design of metal-binding ligands, facilitating the 
development of chelating agents with enhanced metal-binding affinity and selectivity for applications in 
imaging, diagnostics, and therapy. Together, these rules and principles serve as invaluable tools in drug 
discovery, guiding medicinal chemists in the efficient selection, optimization, and development of lead 
compounds with enhanced therapeutic potential and clinical utility[22]. It was noted that native ligand 
violated Pfizer rule, GSK rule, and Golden Triangle rules. 
Caco-2 permeability serves as a pivotal tool in drug discovery, providing valuable insights into the 
intestinal absorption potential of drug candidates. Derived from human colon carcinoma cells, Caco-2 cell 
monolayers closely mimic the epithelial barrier of the small intestine, allowing researchers to assess a 
compound's ability to permeate biological membranes and predict its oral bioavailability. By measuring 
the permeability of compounds across Caco-2 cell monolayers, researchers can identify molecules with 
optimal intestinal absorption properties, guiding the selection and optimization of lead compounds early 
in the drug discovery process. This information is crucial for prioritizing candidates with enhanced oral 
bioavailability, reducing the risk of failure in later stages of development, and accelerating the translation 
of promising compounds from preclinical studies to clinical trials[23]. 
MDCK (Madin-Darby canine kidney) permeability assay holds significant importance in drug discovery as 
it provides crucial insights into a compound's ability to traverse biological barriers, particularly the 
blood-brain barrier (BBB). Derived from canine kidney cells, MDCK cells form tight epithelial monolayers 
similar to those found in biological barriers. By measuring a compound's permeability across MDCK cell 
monolayers, researchers can assess its ability to penetrate cellular membranes and predict its potential to 
cross the BBB. This information is vital for the development of central nervous system (CNS) drugs, as 
compounds must effectively penetrate the BBB to exert therapeutic effects in the brain. Thus, MDCK 
permeability assay plays a pivotal role in early drug screening and optimization, enabling the selection of 
lead candidates with enhanced CNS penetration and improved efficacy for neurological disorders[24]. 
In drug discovery, understanding the role of P-glycoprotein (P-gp) inhibitors and substrates is crucial for 
optimizing the pharmacokinetic properties of potential drug candidates. P-gp, a membrane transporter 
protein, plays a pivotal role in drug efflux from cells, particularly in the blood-brain barrier and 
gastrointestinal tract. By identifying compounds that act as P-gp inhibitors, researchers can enhance the 
bioavailability and efficacy of co-administered drugs by inhibiting their efflux from cells. Conversely, 
recognizing compounds that are substrates for P-gp enables the prediction of potential drug-drug 
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interactions and the design of compounds with improved pharmacokinetic profiles. Therefore, studying 
P-gp inhibitors and substrates is instrumental in mitigating drug resistance, improving therapeutic 
outcomes, and advancing the development of effective and safe medications in various therapeutic 
areas[25–29]. 
In drug discovery, the terms F20% and F30% hold significant importance as they represent the fraction of 
compounds that exhibit at least 20% or 30% oral bioavailability, respectively. These metrics serve as 
critical indicators of a compound's potential for effective absorption following oral administration. By 
evaluating the percentage of compounds that meet these thresholds in screening libraries or during lead 
optimization, researchers can gauge the overall likelihood of identifying orally bioavailable drug 
candidates. This information is invaluable for prioritizing compounds with favorable pharmacokinetic 
properties early in the drug discovery process, thereby reducing the risk of late-stage failures and 
expediting the development of promising therapeutics. Consequently, F20% and F30% play a pivotal role 
in enhancing the efficiency and success rate of drug discovery endeavors. 

 
Table 2. Lipinski rule of 5 and Veber’s rule calculated for molecules 

Code 
Physicochemical Property 

Molecular 
Weight Volume nHA nHD nRot TPSA logS logP 

NL 442.19 440.779 4.0 2.0 5.0 56.33 -4.101 3.381 
MDT-31 407.140 416.532 7 2 5 96.160 -4.010 4.333 
MDT-32 381.140 390.359 5 1 4 58.860 -6.024 4.603 
MDT-33 441.060 403.575 5 1 4 58.860 -6.478 5.215 
MDT-34 397.110 399.503 5 1 4 58.860 -6.439 5.108 
MDT-35 489.050 409.568 5 1 4 58.860 -6.181 5.399 
MDT-36 408.130 410.232 8 1 5 102.000 -6.112 4.359 
MDT-37 393.160 410.378 6 1 5 68.090 -6.021 4.539 
MDT-38 405.200 436.180 5 1 5 58.860 -6.320 5.597 
MDT-39 447.130 428.581 6 1 6 68.090 -6.680 5.611 
MDT-40 377.160 401.588 5 1 4 58.860 -6.092 4.902 
MDT-41 409.140 420.097 5 1 5 58.860 -6.230 5.130 
MDT-42 423.170 436.464 7 1 6 77.320 -5.714 4.191 
MDT-43 391.180 418.884 5 1 4 58.860 -6.129 5.376 
MDT-44 411.130 416.799 5 1 4 58.860 -6.559 5.623 
MDT-45 409.140 420.097 5 1 5 58.860 -5.989 5.047 
MDT-46 437.150 442.618 8 2 6 105.390 -3.909 4.883 
MDT-47 411.150 416.445 6 1 5 68.090 -6.986 5.266 
MDT-48 471.070 429.661 6 1 5 68.090 -7.276 5.852 
MDT-49 427.120 425.589 6 1 5 68.090 -7.238 5.756 
MDT-50 519.060 435.655 6 1 5 68.090 -7.025 6.021 
MDT-51 438.140 436.319 9 1 6 111.230 -7.028 4.995 
MDT-52 423.170 436.464 7 1 6 77.320 -7.004 5.201 
MDT-53 453.210 462.266 6 1 6 68.090 -7.062 6.210 
MDT-54 477.140 454.667 7 1 7 77.320 -7.279 6.205 
MDT-55 407.170 427.674 6 1 5 68.090 -6.919 5.563 
MDT-56 439.150 446.183 6 1 6 68.090 -7.088 5.774 
MDT-57 453.180 462.550 8 1 7 86.550 -6.675 4.829 
MDT-58 421.190 444.970 6 1 5 68.090 -6.853 6.015 
MDT-59 441.140 442.885 6 1 5 68.090 -7.263 6.231 
MDT-60 439.150 446.183 6 1 6 68.090 -6.916 5.692 

 
Table 3. Drug-likeness properties of designed derivatives 

Code 
Medicinal Chemistry 

QED NP score Lipinski 
Rule Pfizer Rule GSK Rule Golden 

Triangle 
Chelator 
Rule 

NL 0.504 0.054 Accepted Rejected Rejected Accepted 0 
MDT-31 0.407 -1.185 Accepted Accepted Rejected Accepted 0 
MDT-32 0.429 -1.607 Accepted Rejected Rejected Accepted 0 
MDT-33 0.351 -1.392 Accepted Rejected Rejected Accepted 0 
MDT-34 0.388 -1.121 Accepted Rejected Rejected Accepted 0 
MDT-35 0.258 -1.612 Accepted Rejected Rejected Accepted 0 
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MDT-36 0.249 -1.605 Accepted Accepted Rejected Accepted 0 
MDT-37 0.419 -1.265 Accepted Rejected Rejected Accepted 0 
MDT-38 0.349 -1.245 Accepted Rejected Rejected Accepted 0 
MDT-39 0.333 -1.377 Accepted Rejected Rejected Accepted 0 
MDT-40 0.422 -1.403 Accepted Rejected Rejected Accepted 0 
MDT-41 0.291 -1.520 Accepted Rejected Rejected Accepted 0 
MDT-42 0.382 -1.085 Accepted Accepted Rejected Accepted 0 
MDT-43 0.395 -1.310 Accepted Rejected Rejected Accepted 0 
MDT-44 0.362 -1.544 Accepted Rejected Rejected Accepted 0 
MDT-45 0.291 -1.418 Accepted Rejected Rejected Accepted 0 
MDT-46 0.369 -1.178 Accepted Accepted Rejected Accepted 0 
MDT-47 0.398 -1.572 Accepted Rejected Rejected Accepted 0 
MDT-48 0.322 -1.371 Accepted Rejected Rejected Accepted 0 
MDT-49 0.359 -1.492 Accepted Rejected Rejected Accepted 0 
MDT-50 0.237 -1.577 Rejected Rejected Rejected Accepted 0 
MDT-51 0.226 -1.572 Accepted Accepted Rejected Accepted 0 
MDT-52 0.382 -1.266 Accepted Accepted Rejected Accepted 0 
MDT-53 0.318 -1.235 Accepted Rejected Rejected Accepted 0 
MDT-54 0.301 -1.361 Accepted Accepted Rejected Accepted 0 
MDT-55 0.392 -1.383 Accepted Rejected Rejected Accepted 0 
MDT-56 0.264 -1.493 Accepted Rejected Rejected Accepted 0 
MDT-57 0.343 -1.097 Accepted Accepted Rejected Accepted 0 
MDT-58 0.365 -1.296 Accepted Rejected Rejected Accepted 0 
MDT-59 0.333 -1.516 Accepted Rejected Rejected Accepted 0 
MDT-60 0.264 -1.380 Accepted Rejected Rejected Accepted 0 

 
Table 4. An absorption parameters of developed molecules 

Code 
Absorption 

Caco-2 
Permeability 

MDCK 
Permeability 

Pgp-
inhibitor 

Pgp-
substrate HIA F20% F30% 

NL -4.881 0.0 --- --- --- --- --- 
MDT-31 -5.507 1.3e-05 --- --- --- --- --- 
MDT-32 -4.931 3.5e-05 - --- --- --- --- 
MDT-33 -4.985 2.8e-05 +++ --- --- --- --- 
MDT-34 -4.981 3.2e-05 -- --- --- + --- 
MDT-35 -4.951 3e-05 -- --- --- + --- 
MDT-36 -4.903 8e-05 --- --- --- --- --- 
MDT-37 -4.980 2.8e-05 ++ --- --- -- --- 
MDT-38 -5.036 2.8e-05 +++ -- --- ++ --- 
MDT-39 -5.071 2.5e-05 - --- --- ---- ---- 
MDT-40 -4.999 -3.3e-05 ++ -- --- ++ --- 
MDT-41 -4.973 2.3e-05 - -- --- - --- 
MDT-42 -5.069 3e-05 +++ --- --- --- --- 
MDT-43 -5.113 3.6e-05 +++ --- ---- --- --- 
MDT-44 -5.086 3.7e-05 + --- --- -- --- 
MDT-45 -5.064 2.6e-05 - -- --- + --- 
MDT-46 -5.437 8.2e-06 --- --- --- --- --- 
MDT-47 -5.006 2.5e-05 +++ --- ---- --- --- 
MDT-48 -5.059 2.3e-05 +++ --- --- --- --- 
MDT-49 -5.048 2.2e-05 +++         --- --- --- --- 
MDT-50 -5.021 2.2e-05 +++ --- --- --- --- 
MDT-51 -4.971 4.8e-05 +++ --- --- --- --- 
MDT-52 -5.061 1.8e-05 +++ --- --- --- --- 
MDT-53 -5.115 2.1e-05 +++ --- --- -- --- 
MDT-54 -5.148 2.2e-05 +++ --- --- --- --- 
MDT-55 -5.075 2.4e-05 +++ --- --- --- --- 
MDT-56 -5.038 1.5e-05 +++ --- --- --- --- 
MDT-57 -5.158 1.9e-05 +++ --- --- --- --- 
MDT-58 -5.190 2.3e-05 +++ --- --- --- --- 
MDT-59 -5.147 2.4e-05 +++ --- --- --- --- 
MDT-60 -5.145 1.8e-05 +++ --- --- --- --- 
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Table 5. Distribution and metabolism profile of developed molecules 

Code 

Distribution Metabolism 

PPB (%) VD BBB 
Penetration Fu 

CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 

Inhibitor 

substrate 

Inhibitor 

substrate 

Inhibitor 

substrate 

Inhibitor 

substrate 

Inhibitor 

substrate 

NL 97.9% 0.525 --- 2.2 --- +++ +++ +++ +++ --- --- --- ++ +++ 
MDT-31 97.831 0.485 -- 1.311 ++ -- - --- + -- +++ --- ++ -- 
MDT-32 98.638 2.846 - 1.326 +++ -- ++ --- ++ + +++ -- +++ - 
MDT-33 98.620 2.969 -- 1.290 +++ -- +++ --- +++ + +++ -- +++ - 
MDT-34 99.255 2.994 --- 1.026 +++ -- +++ --- +++ + +++ -- +++ + 
MDT-35 99.156 2.237 --- 1.203 +++ -- +++ --- +++ + +++ -- +++ + 
MDT-36 98.604 1.249 -- 1.307 +++ -- +++ --- +++ + +++ -- +++ - 
MDT-37 98.677 2.415 -- 1.167 +++ -- +++ --- +++ ++ +++ - +++ + 
MDT-38 99.330 3.417 -- 0.890 +++ -- +++ --- +++ + +++ -- +++ + 
MDT-39 99.69 5.833 --- 0.828 +++ -- +++ --- +++ + +++ -- +++ + 
MDT-40 98.709 2.516 - 1.165 +++ -- +++ --- +++ + +++ -- +++ + 
MDT-41 98.450 2.591 - 0.921 +++ -- +++ --- +++ + +++ -- +++ + 
MDT-42 98.498 1.517 -- 1.090 +++ + +++ ---- +++ ++ +++ - +++ ++ 
MDT-43 99.149 2.509 - 1.005 +++ -- +++ --- +++ + +++ - +++ ++ 
MDT-44 99.387 2.811 --- 0.948 +++ -- +++ --- +++ + +++ -- +++ + 
MDT-45 98.731 2.739 - 0.886 +++ -- +++ --- +++ - +++ -- +++ ++ 
MDT-46 98.680 0.312 --- 1.119 +++ -- + --- ++ -- +++ -- +++ -- 
MDT-47 99.394 2.024 -- 1.251 +++ -- +++ --- +++ + +++ - +++ + 
MDT-48 99.744 2.308 --- 1.354 +++ -- +++ --- +++ + +++ - +++ + 
MDT-49 99.600 2.195 --- 1.088 +++ -- +++ --- +++ + +++ -- +++ ++ 
MDT-50 99.663 1.305 --- 1.231 +++ -- ++ --- +++ + +++ - +++ ++ 
MDT-51 99.543 0.714 --- 1.203 +++ -- +++ --- +++ + +++ - +++ + 
MDT-52 99.131 1.417 --- 1.163 +++ - +++ --- +++ ++ +++ + +++ ++ 
MDT-53 99.888 2.847 --- 0.902 +++ -- +++ --- +++ ++ +++ -- +++ ++ 
MDT-54 100.134 5.495 --- 1.013 +++ - +++ --- +++ ++ +++ - +++ ++ 
MDT-55 99.509 1.741 -- 1.176 +++ -- +++ --- +++ ++ +++ - +++ ++ 
MDT-56 99.523 1.835 --- 0.920 +++ -- +++ --- +++ + +++ -- +++ ++ 
MDT-57 98.693 0.821 --- 1.255 +++ ++ +++ --- +++ ++ +++ + +++ +++ 
MDT-58 99.586 1.733 --- 1.077 +++ - +++ --- +++ + +++ + +++ ++ 
MDT-59 99.806 2.010 --- 1.030 +++ -- +++ --- +++ + +++ - +++ ++ 
MDT-60 99.718 1.951 --- 0.891 +++ -- +++ --- +++ - +++ -- +++ +++ 

 
Table 6. Toxicity and excretion profile of designed molecules 

Com
pound codes 

Toxicity Excretion  

LD
50  (m

g/kg) 

Toxicity class 

Prediction 
accuracy (%

) 

H
epatotoxicity 

(Probability) 

Carcinogenicity 
(Probability) 

Im
m

unotoxicity 
(Probability) 

M
utagenicity 

(Probability) 

Cytotoxicity 
(Probability) 

CL 

T
1/2  

NL 300 3 67.38 I (0.63) I (0.69) A (0.98) I (0.68) I (0.66) 6.806 0.638 
MDT-31 4000 5 54.26 A (0.61) A (0.57) I (0.98) I (0.50) I (0.68) 1.547 0.653 
MDT-32 4000 5 54.26 A (0.55) A (0.52) I (0.68) A (0.62) I (0.87) 5.623 0.106 
MDT-33 500 4 54.26 A (0.54) A (0.52) I (0.67) A (0.61) I (0.85) 3.137 0.135 
MDT-34 200 3 54.26 I (0.5) A (0.50) I (0.81) A (0.57) I (0.87) 5.375 0.135 
MDT-35 500 4 23 A (0.51) A (0.51) I (0.90) A (0.61) I (0.87) 3.736 0.096 
MDT-36 500 4 54.26 A (0.59) A (0.81) I (0.59) A (0.95) I (0.78) 4.326 0.193 
MDT-37 200 3 54.26 A (0.51) A (0.58) A (0.85) A (0.70) I (0.70) 6.135 0.248 
MDT-38 500 4 54.26 I (0.53) A (0.62) I (0.73) A (0.78) I (0.80) 4.680 0.104 
MDT-39 200 3 54.26 A (0.64) A (0.54) A (0.78) A (0.54) I (0.65) 5.788 0.150 
MDT-40 100 3 54.26 A (0.51) A (0.64) I (0.94) A (0.75) I (0.90) 6.361 0.121 
MDT-41 800 4 54.26 A (0.57) A (0.59) I (0.78) A(0.72) I (0.86) 5.702 0.212 
MDT-42 200 3 54.26 I (0.50) A (0.57) A (0.67) A (0.70) I (0.59) 6.819 0.467 
MDT-43 100 3 54.26 I (0.52) A (0.66) I (0.94) A (0.79) I (0.89) 5.698 0.139 



 
 
       

ABR Vol 16 [1] January 2025                                                         33 | P a g e                               © 2025 Author 

MDT-44 200 3 54.26 I (0.50) A (0.52) I (0.92) A (0.59) I (0.88) 5.461 0.103 
MDT-45 800 4 23 A (0.57) A (0.59) I (0.79) A(0.72) I (0.86) 7.067 0.124 
MDT-46 4000 5 23 A (0.54) I (0.52) I (0.98) A(0.60) I (0.67) 2.249 0.483 
MDT-47 4000 5 23 A (0.60) I (0.55) I (0.68) A(0.58) I (0.74) 6.539 0.057 
MDT-48 1000 4 23 A (0.57) I (0.54) I (0.67) A (0.58) I (0.72) 4.217 0.064 
MDT-49 1000 4 23 A (0.55) I (0.55) I (0.81) A (0.58) I (0.75) 6.297 0.069 
MDT-50 1000 4 23 A (0.55) I (0.55) I (0.90) A (0.59) I (0.75) 4.905 0.051 
MDT-51 1000 4 23 A (0.58) A (0.70) I (0.60) A (0.91) I (0.71) 5.775 0.097 
MDT-52 200 3 54.26 I (0.51) I (0.50) A (0.59) A (0.67) I (0.73) 6.707 0.107 
MDT-53 200 3 23 I (0.54) I (0.58) I (0.77) A (0.64) I (0.77) 5.603 0.054 
MDT-54 200 3 23 A (0.63) I (0.51) A (0.74) A (0.56) I (0.75) 6.412 0.069 
MDT-55 500 4 23 I (0.51) A (0.50) I (0.95) A (0.57) I (0.76) 6.627 0.095 
MDT-56 1000 4 23 A (0.54) A (0.52) I (0.82) A (0.61) I (0.82) 7.145 0.060 
MDT-57 1000 4 54.26 I (0.51) I (0.53) I (0.65) A (0.66) I (0.57) 6.991 0.219 
MDT-58 500 4 23 I (0.53) I (0.53) I (0.95) A (0.67) I (0.76) 6.520 0.075 
MDT-59 1000 4 23 A (0.52) I (0.55) I (0.93) A (0.59) I (0.75) 6.297 0.056 
MDT-60 518 4 23 A (0.54) A (0.52) I (0.85) A (0.61) I (0.82) 7.742 0.060 

 
Table 7. Environmental toxicity profile of designed molecules 

-Code 
Environmental toxicity 

Bioconcentration 
Factors IGC50 LC50FM LC50DM 

NL 1.341 3.962 5.123 5.672 
MDT-31 0.211 3.255 4.804 5.062 
MDT-32 2.155 4.566 5.450 5.491 
MDT-33 2.533 4.886 6.095 5.437 
MDT-34 2.464 4.798 5.877 5.380 
MDT-35 2.769 5.051 6.155 5.431 
MDT-36 1.567 4.759 5.680 5.340 
MDT-37 2.091 4.621 5.663 5.411 
MDT-38 2.697 4.779 5.952 5.418 
MDT-39 2.133 4.614 5.863 5.509 
MDT-40 2.164 4.690 5.456 5.374 
MDT-41 2.106 4.565 5.474 5.333 
MDT-42 2.156 4.511 5.553 5.421 
MDT-43 2.399 4.758 5.583 5.369 
MDT-44 2.809 4.988 6.047 5.397 
MDT-45 1.857 4.679 5.697 5.295 
MDT-46 0.315 3.466 5.198 5.183 
MDT-47 2.633 4.744 6.109 5.743 
MDT-48 3.148 5.020 6.671 5.609 
MDT-49 3.077 4.944 6.548 5.501 
MDT-50 3.301 5.149 6.710 5.600 
MDT-51 2.056 4.904 6.309 5.486 
MDT-52 2.758 4.792 6.371 5.527 
MDT-53 3.184 4.927 6.601 5.537 
MDT-54 2.385 4.790 6.385 5.735 
MDT-55 2.780 4.737 6.111 5.477 
MDT-56 2.721 4.859 6.128 5.513 
MDT-57 2.739 4.692 6.283 5.587 
MDT-58 3.055 4.914 6.195 5.496 
MDT-59 3.353 5.100 6.660 5.539 
MDT-60 2.299 4.861 6.338 5.431 

 
Toxic doses are often given as LD50 values in mg/kg body weight. The LD50 is the median lethal dose 
meaning the dose at which 50% of test subjects die upon exposure to a compound. Toxicity classes are 
defined according to the globally harmonized system of classification of labelling of chemicals (GHS). LD50 
values are given in [mg/kg]: 
Class I: fatal if swallowed (LD50 ≤ 5) 
Class II: fatal if swallowed (5 < LD50 ≤ 50) 
Class III: toxic if swallowed (50 < LD50 ≤ 300) 
Class IV: harmful if swallowed (300 < LD50 ≤ 2000) 
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Class V: may be harmful if swallowed (2000 < LD50 ≤ 5000) 
Class VI: non-toxic (LD50 > 5000)(5,30) 
In present study, all the compounds displayed either toxicity class III to V. In drug discovery, the IGC50 
(Inhibitory Concentration for 50% Growth) holds significant importance as a measure of a compound's 
potency in inhibiting the growth of cells or microorganisms. Determining the IGC50 value allows 
researchers to quantitatively assess the efficacy of a potential drug candidate in vitro, providing valuable 
insights into its ability to interfere with biological processes relevant to disease pathogenesis. By 
comparing IGC50 values across different compounds, researchers can prioritize molecules with superior 
potency for further optimization and development. Additionally, IGC50 data plays a crucial role in guiding 
structure-activity relationship (SAR) studies and rational drug design efforts, facilitating the identification 
of lead compounds with optimized pharmacological properties. Ultimately, the IGC50 serves as a key 
parameter in early-stage drug discovery, aiding in the selection and progression of promising candidates 
towards preclinical and clinical evaluation. 
In drug discovery, the LC50FM (Lethal Concentration for 50% of the Maximum Effect) holds significant 
importance as a measure of a compound's toxicity or adverse effects. This metric quantifies the 
concentration of a compound required to produce a lethal effect in 50% of the tested population, often in 
animal models or cellular assays. By determining the LC50FM, researchers can assess the safety profile of 
potential drug candidates and identify compounds with acceptable toxicity levels for further 
development. Understanding the LC50FM allows for the mitigation of potential safety concerns early in the 
drug discovery process, reducing the risk of adverse events during preclinical and clinical trials. 
Additionally, LC50FM data plays a crucial role in informing regulatory decisions and ensuring the safety of 
patients receiving the final drug product. Ultimately, the LC50FM serves as a key parameter in evaluating 
the overall toxicity and safety profile of potential therapeutics, guiding the selection and optimization of 
lead compounds for further development. 
In drug discovery, the LC50DM (Lethal Concentration for 50% of the population under Defined 
Conditions) holds significant importance as a measure of a compound's toxicity or adverse effects under 
specific experimental conditions. This metric quantifies the concentration of a compound required to 
induce mortality in 50% of the tested population, typically in animal models or cellular assays. By 
determining the LC50DM, researchers can assess the safety profile of potential drug candidates under 
defined conditions, such as exposure duration, route of administration, and environmental factors. 
Understanding the LC50DM allows for the identification of compounds with acceptable toxicity levels for 
further development, aiding in the selection and optimization of lead candidates while minimizing the 
risk of adverse events during preclinical and clinical trials. Additionally, LC50DM data informs regulatory 
decisions and contributes to the overall safety evaluation of pharmaceutical products, ensuring the well-
being of patients receiving the final drug formulations[31–33]. 
Molecular Docking Studies 
The combined docked view of all the molecules bound in ligand binding domain cavity of the receptor is 
given in Figure 2. The docking scores and the ligand energies (Kcal/mol) of the molecules are tabulated in 
Table 8. The docking interactions of most potent compounds are tabulated in Table 9. The 2D- and 3D-
docking poses of the molecules are depicted in Table 10. 
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Figure 2. Binding of all the designed molecules in receptor binding domain cavity of target 

 
Table 8. The docking scores and ligand energies (Kcal/mol) of the designed molecules in 

comparison with native ligand 

 
Ligand Code Ligand Energy (Kcal/mol) Binding Affinity (Kcal/mol) 

MDT-31 650.56 -8.4 
MDT-32 638.30 -9.4 
MDT-33 637.19 -8.5 
MDT-34 637.41 -8.6 
-MDT-35 636.74 -8.5 
MDT-36 656.16 -8 
MDT-37 653.71 -8.3 
MDT-38 691.61 -8.7 
MDT-39 685.05 -8.9 
MDT-40 637.85 -8.8 
MDT-41 660.54 -8.3 
MDT-42 683.13 -8.4 
MDT-43 643.98 -9.2 
MDT-44 642.13 -9 
MDT-45 682.64 -9.2 
MDT-46 662.09 -8.4 
MDT-47 648.64 -9.3 
MDT-48 648.71 -8.4 
MDT-49 648.63 -8.7 
MDT-50 647.96 -8.4 
MDT-51 664.65 -8.4 
MDT-52 662.82 -8.6 
MDT-53 703.36 -8.6 
MDT-54 697.52 -9 
MDT-55 649.16 -8.7 
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MDT-56 675.42 -8.3 
MDT-57 693.35 -8.4 
MDT-58 655.07 -9.2 
MDT-59 652.38 -9.1 
MDT-60 694.58 -9 
Native Ligand 413.18 -8.4 

  
Table 9. The binding interactions of the most potent molecules which are selected for further 

evaluation 
Active Amino Acids Bond Length Bond Type Bond Category 

MDT-32 
VAL533 3.62261 Hydrogen Bond Carbon Hydrogen Bond 
LEU384 3.73323 

Hydrophobic 

Pi-Sigma LEU525 3.76913 
MET421 3.97303 Alkyl ILE424 4.46971 
ALA350 4.43424 

Pi-Alkyl 

LEU384 5.41561 
LEU387 5.04867 
LEU387 5.31934 
MET388 4.4957 
LEU391 5.40569 
ALA350 4.22048 
HIS524  4.48205 

MDT-39 

HIS524 3.62066 Hydrogen Bond Carbon Hydrogen Bond 
LEU525 3.7787 

Hydrophobic 

Pi-Sigma 
MET343 5.35299 

Alkyl 
MET421 4.11024 

LEU391 5.32884 

LEU428 5.03192 

ALA350 5.31719 

Pi-Alkyl 

ALA350 4.29835 

LEU384 5.37005 

MET388 5.36445 

LA350 4.71383 

PHE404  4.84013 

PHE425  4.86535 

HIS524  4.13235 
MDT-43 

VAL533 3.39598 Hydrogen Bond Carbon Hydrogen Bond 
HIS524 3.6796 

LEU525 3.70688 

Hydrophobic 

Pi-Sigma 

MET343 5.49327 Alkyl 
MET421 4.0129 

ALA350 5.20494 

Pi-Alkyl 
ALA350 4.23643 

LEU384 5.43019 

LEU384 5.3406 

MET388 5.34962 
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ALA350 4.81034 

HIS524  4.13753 
MDT-44 

VAL533 3.42275 Hydrogen Bond Carbon Hydrogen Bond 
HIS524 3.64882 

LEU525 3.70634 

Hydrophobic 

Pi-Sigma 

MET388 4.64571 

Alkyl 
LEU391 4.70557 

LEU428 4.72995 

MET343 5.44674 

MET421 4.01498 

ALA350 5.18369 

Pi-Alkyl 

ALA350 4.23119 

LEU384 5.41432 

LEU384 5.34341 

MET388 5.37191 

ALA350 4.8395 

PHE404 5.20861 

HIS524  4.1525 
MDT-45 

LEU346 2.69783 Hydrogen Bond 
Conventional Hydrogen 
Bond 

LEU525 3.90933 

Hydrophobic 

Pi-Sigma 
LEU525 3.59527 

LEU349 5.13782 

Alkyl LEU391 4.34105 

MET343 5.36594 

MET421 4.01723 

MET421 4.34462 

Pi-Alkyl 

ILE424 4.96773 

LEU525 5.28174 

ALA350 4.35343 

PHE404  4.86286 

HIS524  4.59588 
MDT-47 

VAL533 3.57798 Hydrogen Bond Carbon Hydrogen Bond 
HIS524 3.35259 

LEU384 3.7688 

Hydrophobic 

Pi-Sigma 
LEU525 3.73136 

MET421 3.92541 Alkyl 
ILE424 4.35825 

 ALA350 4.42273 
Pi-Alkyl LEU384 5.46091 

LEU387 5.03588 
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LEU387 5.3373 

MET388 4.55064 
LEU391 5.38612 
ALA350 4.25477 
HIS524  4.49257 

MDT-54 
LEU525 3.79176 

Hydrophobic 

Pi-Sigma 

LEU391 5.37483 Alkyl 
LEU428 5.10248 
ALA350 5.30125 

Pi-Alkyl 

ALA350 4.29482 
LEU384 5.49492 
LEU384 5.31321 
MET388 5.34351 
ALA350 4.71076 
PHE404  4.84945 
PHE425  4.89467 

MDT-58 
VAL533 3.50867 Hydrogen Bond Carbon Hydrogen Bond 
LEU525 3.67361 

Hydrophobic 

Pi-Sigma 
ALA350 4.25448 

Pi-Alkyl 

ALA350 5.21381 
LEU384 5.33551 
LEU384 5.43475 

MET388 5.32868 
ALA350 4.80475 

MDT-59 
VAL533 3.4564 Hydrogen Bond Carbon Hydrogen Bond 
LEU525 3.71172 

Hydrophobic 

Pi-Sigma 

MET388 4.59883 

Alkyl 
LEU391 4.71006 
LEU428 4.69576 

MET343 5.49865 
MET421 4.0424 
ALA350 5.20314 

Pi-Alkyl 

ALA350 4.24561 
LEU384 5.40341 
LEU384 5.33308 
MET388 5.34723 
ALA350 4.80601 
PHE404  5.25038 
HIS524 4.11033 

MDT-60 
ASP351 3.43609 Hydrogen Bond Carbon Hydrogen Bond 
LEU525 3.98461 

Hydrophobic 

Pi-Sigma LEU525 3.69435 
PHE404 5.72167 Pi-Pi T-shaped 
MET343 4.85606 

Alkyl MET421 4.46419 
LEU387 4.78573 
LEU391 4.0562 
MET388 5.26783 

Pi-Alkyl 
ALA350 4.26495 
PHE404  4.89975 

HIS524  4.16211 
 
 
 



 
 
       

ABR Vol 16 [1] January 2025                                                         39 | P a g e                               © 2025 Author 

Table 10. The docking poses of the most potent molecules 
3D-docking poses 

 
MDT-32  

MDT-39 

 
MDT-43 

 
MDT-44 

 
MDT-45 

 
MDT-47 

 
MDT-54 

 
MDT-58 
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MDT-59 

 
MDT-60 

 
Native Ligand 

 
From molecular docking, it was observed that many molecules displayed less binding free energy than 
native ligand and formed at least one hydrogen bond. Therefore, such molecules were selected for the 
further analysis. The discussion of those molecules are given below: 
Native ligand displayed -8.4 kcal/mol binding affinity and did not formed any kind of conventional 
hydrogen bond. It has developed only one carbon-hydrogen bond with Asp351. It has developed few 
hydrophobic (Pi-sulfur, Pi-Pi T-shaped and Pi-alkyl) binds with Phe404, Ala350, Leu387, Leu391, Leu525, 
Met421, and Leu525. MDT-2 exhibited -9 kcal/mol binding free energy and formed one fluorinated 
halogen bond with Glu353. It has developed many hydrophobic interactions (Pi-sigma, alkyl, and Pi-alkyl) 
with Leu525, Met421, Ile424, Ala350, Leu387, Leu391, Met388, and His 524. MDT-32 exhibited -9.4 
kcal/mol binding affinity with estrogen alpha and formed one carbon hydrogen bond with Val533. It has 
developed many hydrophobic interactions (Pi-Sigma, Alkyl, Pi-Alkyl) with Leu384, Leu525, Met421, 
Ile424, Ala350, Leu387, Met388, Leu391 and His524. MDT-39 displayed -8.9 kcal/mol docking score with 
target and developed one carbon hydrogen bond with His524. It has formed one Pi-sigma bond with 
Leu525. It has developed many hydrophobic (alkyl and Pi-alkyl) interactions with Met343, Met421, 
Leu391, Leu428, Ala350, Leu384, Met388, La350, Phe404, Phe425 and His524. 
MDT-43 demonstrated -9.2 kcal/mol binding affinity and formed two carbon hydrogen bonds with 
Val533 and His524. It has developed numerous hydrophobic (Pi-sigma, alkyl, and Pi-alkyl) bonds with 
Leu525, Met343, Met421, Phe404, Leu384, Met388, Ala350 and His524. MDT-44 has formed two carbon 
hydrogen bonds withVal533 and His524. It exhibited -9 kcal/mol binding free energy. It has developed 
many hydrophobic interactions (Pi-sigma, alkyl, and Pi-alkyl) with Leu525, Met388, Leu391, Leu428, 
Met343, Met421, Ala350, Leu384, Phe404 and His524. MDT-45 showed -9.2 kcal/mol binding energy 
with target and formed one conventional hydrogen bond with Leu525. It has developed many 
hydrophobic interactions with Leu525, Met343, Leu391, Met421, Ala350, Met421, Phe404 and His524. 
MDT-47 has formed two carbon hydrogen bonds with Val533 and His524. It has formed several 
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hydrophobic interactions (Pi-sigma, alkyl, and Pi-alkyl) with Leu525, Met388, Leu391, Met421, Ile424, 
Ala350, and His524. It displayed -9.3 kcal/mol binding affinity with estrogen alpha receptor. 
MDT-54 showed -9 kcal/mol binding affinity with target and it has developed many hydrophobic 
interactions with Leu525, Met388, Leu391, Leu428, Ala350, Leu384, Phe404 and Phe425. MDT-58 
displayed -9.2 kcal/mol binding free energy and developed one carbon hydrogen bond with Val533. It has 
developed many hydrophobic interactions with Leu525, Met388, Leu384 and Ala350. MDT-59 displayed -
9.1 kcal/mol binding free energy and developed one carbon hydrogen bond with Val533. It has developed 
many hydrophobic interactions with leu525, Met388, Leu391, Leu391, Leu428, Met343, Met421, Ala350, 
Leu384, Phe404 and His524.MDT-60 exhibited -9 kcal/mol binding affinity with estrogen alpha and 
formed one carbon hydrogen bond with Asp351. It has developed many hydrophobic interactions with 
Leu525, Phe404, Met343, Met421, Leu387, Leu391, Met388, Ala350, and His524. 
As these molecules formed more stable complex with target receptor, therefore from present 
investigation, we have selected MDT-32, MDT-39, MDT-43, MDT-44, MDT-45, MDT-47, MDT-54, MDT-58, 
MDT-59, and MDT-60 for the wet lab synthesis and biological evaluations. 
 
CONCLUSION 
This study aimed to explore the potential of indole derivatives as SERDs by conducting an in-depth in 
silico screening using ADMET analysis and molecular docking. The objective was to identify compounds 
with favorable pharmacokinetic profiles and strong binding affinities for ERα, which could serve as 
effective SERDs for breast cancer therapy. The results showed that most indole derivatives demonstrated 
optimal drug-likeness with favorable ADME parameters. Toxicity analysis indicated that the compounds 
fell within toxicity classes III to V, signifying manageable safety profiles. Molecular docking studies 
further revealed that several compounds, including MDT-32, MDT-39, MDT-43, MDT-44, MDT-45, MDT-
47, MDT-54, MDT-58, MDT-59, and MDT-60, exhibited higher binding free energies than the native ligand, 
with values ranging from -8.4 to -9.4 kcal/mol. Notably, these compounds also formed one or more 
conventional hydrogen bonds with the target enzyme, unlike the native ligand, which showed a binding 
affinity of -8.4 kcal/mol but did not form hydrogen bonds. In conclusion, the findings indicate that 
selected indole derivatives exhibit promising attributes as SERD candidates for breast cancer treatment. 
Compounds MDT-32, MDT-39, MDT-43, MDT-44, MDT-45, MDT-47, MDT-54, MDT-58, MDT-59, and MDT-
60 are strong candidates for further exploration through wet lab synthesis and biological evaluation. 
These molecules hold significant potential to be developed into potent and selective SERDs, offering a 
novel approach to cancer therapy by effectively targeting estrogen receptor degradation. 
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