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ABSTRACT 
Orthodontic treatment is associated with changes in the oral environment, including alterations in salivary biomarkers. 
This review aims to explore the correlation between salivary cytokine IL-17A and 1,25 dihydroxycholecalciferol 
(1,25(OH)2D3) levels in patients undergoing orthodontic treatment. IL-17A, a proinflammatory cytokine, and 
1,25(OH)2D3, the active form of vitamin D, play crucial roles in immune regulation and bone metabolism, respectively. 
Understanding their interplay during orthodontic treatment could provide insights into the inflammatory and bone 
remodeling processes involved. Through a comprehensive review of the literature, this paper examines the existing 
evidence on the relationship between IL-17A and 1,25(OH)2D3 levels in saliva during orthodontic interventions. Insights 
from this review may contribute to elucidating the mechanisms underlying orthodontic treatment outcomes and 
potentially guide the development of novel therapeutic strategies to optimize patient care. 
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INTRODUCTION 
Orthodontics is a dental specialty focused on monitoring and managing the development and growth of 
the teeth and related anatomical structures, from birth until the teeth are fully mature. This field 
encompasses both preventive and corrective procedures to address dental irregularities, which often 
require repositioning teeth using either functional or mechanical methods to achieve normal occlusion 
and improve facial aesthetics [1]. The goals of orthodontic treatment are well illustrated by Jackson’s 
triad, which includes three primary objectives: functional efficiency, structural balance, and aesthetic 
harmony. Although there have been significant advancements in simulating treatments and the 
biomechanics involved in correcting malocclusions, the duration of treatment remains a major concern 
for both clinicians and patients. Biological, biomechanical, physical, and surgical approaches were 
explored to reduce the treatment time. The biological methods to accelerate Orthodontic Tooth 
Movement (OTM) involve the use of molecules such as Prostaglandin (PG), Interleukin (IL), Receptor 
Activator of Nuclear Factor Kappa B Ligand (RANK & RANKL), Osteoprotegerin (OPG), Vitamin D, 
Parathyroid Hormone (PTH), and Relaxin. Although experimental studies on animals using these 
molecules, alone or in combination, have shown promising results, human studies remain limited due to 
challenges with patient compliance [2][3]. This review aims to examine the available evidence on the 
roles of salivary cytokine IL-17 A and 1,25-dihydroxycholecalciferol in accelerating orthodontic tooth 
movement. 
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Saliva as a Diagnostic Tool in Orthodontic Tooth Movement 
Early detection of diseases is critical for effective diagnosis and treatment planning in clinical practice. 
Both clinicians and researchers are continually searching for innovative diagnostic methods that allow for 
the early identification of diseases. Traditional diagnostic procedures often involve invasive techniques, 
such as blood draws or biopsies, which can cause discomfort and stress for patients. Various biomarkers 
are utilized to facilitate early detection and prevention of human diseases. Saliva offers a compelling 
alternative to serum due to its non-invasive nature, safety, and ease of collection while containing 
adequate amounts of biomarkers necessary for disease diagnosis. Compared to gingival crevicular fluid 
(GCF) collection, saliva sampling is less sensitive to technique [4]. Although the use of saliva for diagnostic 
purposes dates back to the 1960s, significant advancements have been made in sensitive detection 
techniques since then. Salivary diagnostics now play a crucial role in clinical disease diagnosis. Currently, 
saliva is employed in diagnosing oral, autoimmune, and genetic disorders, detecting infections and 
malignancies, monitoring hormone and drug levels, serving as forensic evidence, and, notably in 
orthodontics, as an indicator of bone turnover [5]. According to the National Institutes of Health 
Biomarkers Definitions Working Group, the definition of a biomarker is “a characteristic that is 
objectively measured and evaluated as an indicator of normal biological processes, pathological 
processes, or pharmacologic responses to a therapeutic intervention” [6][7]. An ideal biomarker should 
possess specific characteristics: it must be valid, safe, easily measurable, and collected through non-
invasive methods. Additionally, it should have high sensitivity to accurately identify individuals with a 
disease (true-positive) and those without (true-negative) [6]. Consistency across various demographics, 
including age, gender, and ethnicity, is also essential. The human oral cavity contains several reliable 
biomarkers, including saliva, gingival crevicular fluid, peri-implant sulcular fluid (PISF), and mouth rinse 
remnants. Saliva, rich in diverse biomarkers, can be easily collected without causing trauma and stored in 
larger quantities. This review will discuss the relevance of saliva as a biomarker and its role in 
orthodontic tooth movement. 
Formation and Function of Saliva 
Saliva, once primarily viewed as a digestive fluid, is now recognized as a complex biofluid containing a 
wide array of molecular, microbial, and chemical components. These components can reflect underlying 
infectious, local, or systemic conditions[9-11], thus highlighting the role of saliva in molecular diagnostics. 
In the human oral cavity, saliva is sourced mainly from three major salivary glands—the parotid, 
submandibular, and sublingual glands—alongside numerous minor salivary glands. Acinar cells in these 
glands synthesize saliva, which is then transported through small ducts into the oral cavity[12]. The 
major salivary glands are responsible for 90% of saliva production, with the remaining 10% coming from 
the minor glands, such as labial, buccal, lingual, and palatal glands. Saliva is a slightly acidic fluid, with a 
pH ranging from 6 to 7. It predominantly consists of water (99%), followed by proteins (0.3%) and 
inorganic substances (0.2%)[13]. Humans typically produce about 1 to 1.5 liters of saliva daily, with 
secretion rates varying from 0.3 to 0.7 ml per minute [14,15]. The functions of saliva extend beyond 
digestion to include tasting, swallowing, tissue lubrication, and acting as a protective barrier against 
pathogens. Saliva contains various electrolytes such as sodium, potassium, magnesium, calcium, 
bicarbonate, and phosphates. It also harbors proteins, immunoglobulins, enzymes, mucins, and 
nitrogenous compounds like urea and ammonia. The interaction of these components supports several 
key functions: bicarbonates and phosphates help modulate saliva's pH and buffering capacity; mucins and 
protein macromolecules aid in cleansing and aggregating oral microorganisms; calcium and phosphate 
play roles in demineralization and remineralization; and immunoglobulins, enzymes, and proteins 
contribute to antibacterial actions.[14] The high permeability of salivary glands, due to their capillary 
coverage, allows for the exchange of molecules between blood and saliva.[16] These molecules can be 
transported through transcellular (active and passive) or paracellular (extracellular) routes, potentially 
altering the molecular composition of saliva.[17,18] This property suggests that saliva may carry vital 
information about an individual's health status. 
Efficacy of Saliva over Blood and GCF 
Blood is a well-known source for measurable biomarkers, containing a wide range of hormones, 
antibodies, enzymes, and growth factors.[19]  However, saliva presents several advantages over blood: 
1. It is easily and safely collected, even allowing for self-collection. 
2. Collection is non-invasive, reducing patient discomfort and compliance issues. 
3. Saliva is safer to handle due to the absence of bloodborne pathogens [20] 
4. Saliva is easier to store and ship because it does not clot. 
5. It is more economical since collection, transport, and storage are less expensive. 
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Despite these advantages, saliva also has some drawbacks. Variations in its volume and composition can 
occur due to physiological and pathological states, both between individuals and within the same person 
over time, which complicates standardization.[21] Additionally, the concentration of analytes in saliva 
tends to be lower compared to blood. For example, salivary IgA levels range between 250 to 500 µg/ml, 
whereas serum levels are 2.5 to 5 mg/ml[22] 
Gingival crevicular fluid (GCF) is another oral fluid, found in the crevice between the tooth surface and 
epithelial tissue. The nature of GCF—whether it's a transudate or exudate—remains controversial, and its 
flow rate varies with the degree of inflammation, typically ranging from 0.5 to 2.4 mL. [23] GCF also 
presents challenges, including variability in fluid amount between healthy and diseased states, 
influencing collection time, potential contamination, and difficulties in extracting molecules from 
collected samples. 
 
Methods of Collection of Saliva 
Salivary sample collection is influenced by several factors, including gland type, salivary stimulus 
(gustatory or mechanical), circadian rhythm, diet, age, physiological state, and the method of collection. 
Common collection methods include draining, suctioning, and spitting, with rinsing the oral cavity 
beforehand to avoid contamination being crucial. The composition of submandibular saliva is notably 
lower in the afternoon due to circadian variations, similar to findings in studies on the parotid gland . For 
accurate results, it is advised to avoid eating, drinking, or brushing teeth at least two hours prior to 
collection.[24,25] Stimulated saliva can be obtained by chewing unflavored gum or wax for five minutes, 
with rates expressed in ml/min. Stimulated salivary flow rates below 0.7 ml/min are indicative of 
xerostomia. Studies show that different methods of saliva collection and variations in oral hygiene 
practices can significantly affect salivary biomarker levels, emphasizing the need for standardized 
methods to optimize saliva's use in diagnostics.[26] . 
Salivary Diagnostics 
Salivary molecules provide crucial diagnostic information and can be examined through proteomic, 
genomic, and transcriptome analyses. 
Proteomic Analysis 
Human saliva contains proteins synthesized within the salivary glands and those derived from blood. 
Around 2,340 salivary proteins have been identified, with 20-30% overlapping with blood proteins. 
Recently, a comprehensive list of 1,166 salivary secretory proteins was published [27,28] 
Genomic Analysis 
Saliva has emerged as an alternative to blood for genomic RNA collection, meeting all requirements for 
sample collection in genetic studies.[29] 
Transcriptome Analysis 
Salivary transcriptome analysis is valuable for diagnosing diseases. A typical salivary transcriptome 
contains about 3,000 mRNA molecules, with 180 common across healthy individuals, forming the normal 
salivary transcriptome core (NSTC).[30, 31] . 
Salivary Biomarkers and Their Role in Orthodontic Tooth Movement (OTM) 
Salivary proteins show promise for monitoring the effectiveness and adverse reactions to orthodontic 
treatment.[32] The ability to see the same set of patients over time allows for easy collection and 
measurement of saliva at various points, minimizing individual variation. [33]. Myeloperoxidase (MPO), 
an enzyme found in polymorphonuclear neutrophil granules, serves as a marker for inflammation 
associated with orthodontic tooth movement, with activity peaking two hours after initial activation and 
remaining elevated for up to seven days.[34] Leptin, which acts both as a hormone and a cytokine, plays a 
role in bone remodeling, resorption, and new bone formation. Studies have established a positive 
correlation between salivary leptin levels and the rate of tooth movement, with reduced rates observed in 
overweight individuals compared to those with normal weight.[35] The evaluation of osteotropic factors, 
such as sRANKL and OPG, in saliva revealed that their ratios might correlate with different OTM phases, 
although their protein concentrations were not directly associated. ApoE, a protein involved in fat 
metabolism, was found to be upregulated in active orthodontic cases, suggesting lower bone metabolism 
and increased adipogenesism [36,37] Challenges in proteomics include low protein concentrations, 
transient secretion of biomarkers, and potential contamination by food, oral mucosa, or microorganisms . 
Certain biomarkers identified may relate more to bone healing post-surgery rather than to orthodontic 
treatment directly[38] Salivary levels of deoxypyridinoline (DPD) and bone-specific alkaline phosphatase 
(BAP) are indicators of bone remodeling, with DPD prominent during early OTM phases and BAP 
indicating bone formation cessation . Increases in sRANKL and decreases in OPG levels after orthodontic 
activation support their potential role in monitoring OTM [39] Assessment of cytokines and enzymes in 
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saliva and blood via multiplex enzyme-linked immunosorbent assay (ELISA) has shown that saliva is 
more sensitive than blood in detecting changes secondary to orthodontic treatment . Salivary parameters 
like pH, antioxidants, C-reactive protein (CRP), cortisol, and protein levels largely remain stable post-
exposure to orthodontic appliances, with minor transient effects.[40-45] Increased alpha-amylase activity 
following orthodontic activation indicates stress response in patients, linked to pain and masticatory 
performance . Biochemical properties such as protein concentration and calcium levels show significant 
changes during OTM, affecting the oral environment[45-48] 
Orthodontic Tooth Movement 
Orthodontic Tooth Movement (OTM) involves a complex biological process that occurs when orthodontic 
forces are applied to teeth. This process creates areas of pressure and tension in the periodontal ligament 
(PDL), leading to both macroscopic and microscopic changes dependent on the force's magnitude, 
frequency, and duration. Applied forces induce strain in the PDL, enhancing its blood supply and 
triggering the release of various biochemical mediators like cytokines, growth factors, neurotransmitters, 
and other substances. These mediators facilitate bone remodeling, either by promoting bone deposition 
or resorption, thereby enabling tooth movement. 
Historical Perspective of Orthodontic Tooth Movement 
The study of orthodontic tooth movement began in earnest in 1911. Oppenheim was among the first to 
examine histological changes during tooth movement in baboons. Reitan later expanded on this research, 
developing the pressure-tension model, which suggests that orthodontic forces affect each side of the 
tooth differently. Another significant theory, the hydraulic theory, proposed by Stuteville in 1938, posits 
that tooth movement forces are absorbed by fluids from various body systems, which helps regulate and 
limit movement. Subsequent work by Bien and Baumrind in the 1960s further explored these theories. 
While both the pressure-tension and fluid flow concepts have their merits, further research is needed to 
understand the mechanisms of tooth movement fully. 
Theories of Tooth Movement 
Two main theories explain orthodontic tooth movement: 
The Pressure-Tension Theory 
This theory posits that tooth movement occurs in the PDL space, creating pressure and tension sides. On 
the pressure side, reduced blood flow leads to decreased cell replication and disorganization of the PDL, 
while the tension side experiences increased cell activity and fiber production due to stretching. 
Introduced by Sandstedt in 1904 and refined by Oppenheim and Schwarz in 1932, this theory highlights 
the differential responses in the PDL. Excessive force can cause bone resorption and tissue damage. 
Histological studies show that the initial signs of tissue damage include cell death and formation of cell-
free zones. Macrophages and osteoclasts then remove the damaged tissue, leading to bone resorption and 
remodeling. The pressure-tension theory indicates that osteoclasts are involved in resorbing bone on the 
pressure side, while osteoblasts promote new bone formation on the tension side.[49-55] 
The Bone Bending Theory 
Proposed by Farrar in 1988 and later refined by Baumrind and Grimm, this theory suggests that 
orthodontic forces cause deflection in the alveolar bone, resulting in strains in the PDL and stimulating 
bone turnover. According to this theory, bone responds to orthodontic forces by bending and undergoing 
reorganization[56-60]. The concept also includes the generation of electric potentials in stressed tissues, 
which influence bone remodeling. Research by Bassett and Becker in 1962 supported the idea that 
bioelectric responses play a role in orthodontic tooth movement. Despite these findings, further research 
is needed to clarify the exact mechanisms.[61-64] 
Phases of Tooth Movement 
Tooth movement is divided into three phases: 
Initial Phase: Characterized by rapid tooth displacement within the PDL following force application. This 
phase lasts 1-4 days and involves the initiation of osteoclastic and osteoblastic activities. 
Lag Phase: This phase follows the initial phase and is marked by minimal movement due to the 
hyalinization of the PDL in compression areas. Lasting from 4 to 20 days, it involves the removal of 
necrotic tissue before further tooth movement can occur. 
Post-Lag Phase: Starting approximately 40 days after force application, this phase involves gradual or 
rapid tooth movement and ongoing bone remodeling. Collagen fibers show irregular orientation and bone 
resorption occurs on the pressure side, while new bone formation by osteoblasts is evident on the tension 
side.[65-70] 
Factors Affecting Tooth Movement 
Several factors influence the rate and efficiency of orthodontic tooth movement: 
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Inflammatory Response: The application of orthodontic forces triggers an acute inflammatory response, 
increasing PDL blood flow and leukocyte exudation. This inflammatory process leads to the production of 
prostaglandins, growth factors, and cytokines, which are crucial for bone remodeling. 
Arachidonic Acid Metabolites: Prostaglandins (PGs) and leukotrienes (LTs), derived from arachidonic 
acid, are essential in mediating tooth movement. PGE2 enhances osteoclast activity and bone resorption, 
while leukotrienes may influence tooth movement [71]. 
Prostaglandins: Originally discovered in human semen and identified in various cell types, 
prostaglandins like PGE2 are key mediators in orthodontic tooth movement. They stimulate osteoclast 
differentiation and activity, facilitating bone resorption and promoting osteoblastic differentiation and 
bone formation.[72-79] 
Cytokines and Their Role in Orthodontic Tooth Movement 
Cytokines are a diverse group of signaling molecules, including proteins, peptides, and glycoproteins, 
secreted by specific immune cells. They act on adjacent cells at low concentrations through autocrine or 
paracrine mechanisms, facilitating cell-to-cell communication. 
Cytokines in Bone Remodeling 
Various cytokines, including interleukins (IL) such as IL-1, IL-2, IL-3, IL-6, IL-8, tumor necrosis factor-
alpha (TNFα), gamma interferon (IFNγ), and osteoclast differentiation factor (ODF), are central to bone 
metabolism and orthodontic tooth movement (OTM). IL-1, for example, activates osteoclasts via the IL-1 
type 1 receptor, with its release triggered by stimuli like neurotransmitters, bacterial products, cytokines, 
and mechanical forces [81, 82]. Specifically, IL-1 directs osteoclasts to resorb bone by targeting 
osteoblasts, and increased IL-8 levels at periodontal ligament (PDL) tension sites are believed to support 
this remodeling process [83]. Furthermore, IL-1 activates NF-kappaB-like factors in osteoclast-like cells 
[84]. TNFα promotes the differentiation of osteoclast progenitors into mature osteoclasts in the presence 
of macrophage colony-stimulating factor (M-CSF) [85][86]. Studies using histochemical staining have 
shown elevated IL-1 and TNFα levels in the PDL and alveolar bone during OTM in animal models 
[86][87]. IFNγ, a critical cytokine in innate and adaptive immunity, activates macrophages and modulates 
the production of IL-1 and TNFα. During OTM, IFNγ contributes to bone resorption by inducing the 
apoptosis of effector T-cells [88]. Research has consistently shown that pro-inflammatory cytokines like 
IL-1β, IL-6, and TNF-α are pivotal in bone remodeling, driving both bone resorption and formation. In 
animal studies, mRNA expression of IL-1β, IL-6, and TNF-α peaked three days after the application of 
orthodontic forces, reflecting their role in initiating bone resorption [89]. The RANK/RANKL/OPG 
signaling pathway, crucial for osteoclast differentiation and activity, regulates bone remodeling and 
repair. RANK, a receptor for RANKL (RANK-Ligand), plays an essential role in this process. 
Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor (OCIF), is a cytokine receptor 
that acts as a decoy receptor for RANKL, inhibiting osteoclastogenesis and bone resorption [90]. OPG 
expression can be upregulated by IL-1β, TNFα, 25(OH)2D3, and estrogen [91-93]. RANKL, produced 
primarily by osteoblasts, is essential for activating osteoclasts and promoting bone resorption. Recent 
research has identified osteocytes as a major source of RANKL during bone remodeling [94-96], with 
RANKL from other cell types contributing to bone loss in inflammatory conditions. A study by Garlet TP et 
al. utilized RT-PCR to examine the expression of various cytokines and bone remodeling markers in the 
PDL during rapid maxillary expansion in humans. The study found a differential expression of cytokines 
between the compression and tension sides of the PDL. On the compression side, TNF-α, RANKL, and 
matrix metalloproteinase-1 (MMP-1) were elevated, while on the tension side, IL-10, tissue inhibitor of 
metalloproteinases-1 (TIMP-1), OPG, and osteocalcin (OCN) levels were higher. TGF-β levels were similar 
on both sides. 
Role of IL-17A in Tooth Movement 
Interleukin-17A (IL-17A), commonly referred to as IL-17, was first identified by Rouvier et al. in 1993 
from a rodent T-cell hybridoma [98]. IL-17 is part of a cytokine family comprising six ligands: IL-17A, IL-
17B, IL-17C, IL-17D, IL-17E (IL-25), and IL-17F. These ligands interact with six receptors, including IL-
17RA, IL-17RB/IL-17R, IL-17RC, IL-17RD/SEF, and IL-17RE [101]. While IL-17 was initially thought to be 
secreted exclusively by T cells [101, 102], it is now understood to be produced by several immune cells, 
including macrophages, natural killer cells, dendritic cells, and other lymphoid cells. CD4+ T cells, CD8+ T 
cells, and innate lymphoid cells (ILCs) are major producers of IL-17A [103]. The differentiation of IL-17-
producing CD4+ T cells, known as Th17 cells, is driven by cytokines such as IL-1, IL-6, and transforming 
growth factor-beta (TGF-β) [108]. In addition to IL-17A, Th17 cells also produce cytokines like IL-17F, 
TNF-α, IL-21, and IL-22, all of which contribute to bone resorption and collagen degradation in vitro 
[109]. IL-17A stimulates the expression of RANKL (Receptor Activator of Nuclear Factor Kappa-Β Ligand) 
in osteoblasts [110]. Th17 cells, which exhibit high RANKL levels, play a significant role in enhancing bone 
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turnover [111]. IL-17A, encoded by the IL17A gene, is a pro-inflammatory cytokine that regulates key 
signaling pathways such as NF-kappa B and mitogen-activated protein kinases. It also induces the 
production of IL-6, making it crucial for paradental tissue remodeling during orthodontic tooth 
movement. 
Methods for Detecting Salivary Cytokines 
Bioassays: These assays have historically been used to measure cytokine bioactivity in specific biological 
models or cell lines. Examples of bioassays include tests for chemotactic activity, proliferation, and 
cytotoxicity. Although bioassays offer good sensitivity and the ability to detect biologically active 
molecules, they have limitations such as lack of specificity, extended processing times, and imprecision. 
Immunoassays: Immunoassays, particularly enzyme-linked immunosorbent assays (ELISA), are 
currently the preferred method for cytokine detection. ELISA uses a primary antibody for cytokine 
capture and a secondary antibody that is either enzyme- or radioisotope-conjugated for detection. 
Traditional ELISA kits are designed to detect one cytokine at a time. However, multiplex systems now 
allow for the simultaneous measurement of multiple cytokines in a single assay. These systems can 
analyze cytokine levels in various body fluids, including plasma, serum, cell lysates, cerebrospinal fluid, 
ascites, saliva, and urine. 
Flow Cytometry: Flow cytometry, along with techniques like high-performance liquid electrophoresis, is 
another method employed for detecting cytokines and their receptors. Flow cytometry is particularly 
effective in analyzing intracellular cytokines and can provide results in under two hours. Despite its 
efficiency, this method presents challenges such as difficulties in quantifying intracellular cytokines, 
dealing with background autofluorescence, and ensuring proper gating and negative controls [112]. 
Role of 1,25-Dihydroxycholecalciferol in Orthodontic Tooth Movement 
1,25-Dihydroxycholecalciferol (1,25-DHCC), or calcitriol, is the active form of vitamin D, primarily 
synthesized in the kidneys [113, 114]. It plays a critical role in calcium homeostasis and functions as a 
hormone that binds to the vitamin D receptor (VDR) in the nucleus of cells, enhancing gene expression. 
Calcitriol raises blood calcium levels by promoting its absorption in the intestines. In response to low 
serum calcium, it stimulates parathyroid hormone (PTH) secretion, which in turn increases phosphate ion 
excretion and boosts calcium reabsorption in the kidneys. PTH also facilitates the conversion of 25-
hydroxycholecalciferol into 1,25-dihydroxycholecalciferol. Additionally, 1,25-DHCC stimulates osteoclast 
differentiation and activation, critical for bone resorption, and also supports bone mineralization and 
osteoblastic differentiation in a dose-dependent manner [78]. 
Historical Perspective of 1,25-Dihydroxycholecalciferol 
Vitamin D is among the first hormones discovered, initially identified in phytoplankton species such as 
Emiliani huxleyi [115], which synthesizes vitamin D when exposed to sunlight. It is vital for calcium 
maintenance across marine and terrestrial life. Vitamin D production is influenced by factors like skin 
pigmentation, seasons, latitude, altitude, and sunscreen use. A deficiency in vitamin D has been linked to 
systemic diseases, including cardiovascular disorders, diabetes, and immune deficiencies. In orthodontics, 
vitamin D is known to aid in enhancing tooth movement and stabilizing the position of teeth. The human 
body requires approximately 3,000-5,000 IU of vitamin D daily [116], which can be derived from food 
sources like eggs and fatty fish [117, 118]. Non-vegetarians typically have higher vitamin D levels than 
vegetarians. An inverse relationship exists between vitamin D levels and serum PTH concentration, with a 
25OHD level of about 20 ng/ml considered adequate for suppressing PTH [119]. 
Metabolism of 1,25-Dihydroxycholecalciferol 
After ingestion, vitamin D is transformed into chylomicrons that enter the bloodstream via the lymphatic 
system [120]. It binds to vitamin D-binding proteins and lipoproteins for transport to the liver, where 
vitamin D2 and D3 undergo hydroxylation to produce a metabolite that reflects the body's vitamin D 
status. This metabolite is further hydroxylated in the kidneys, producing the active hormone calcitriol 
[121, 122]. The enzyme 1α-hydroxylase, mainly located in the proximal tubules of the kidney, converts 
25-hydroxyvitamin D into 1,25-dihydroxyvitamin D. This metabolite has been detected in human gingival 
fibroblasts and periodontal ligament cells, indicating potential autocrine or paracrine functions in these 
tissues. Sunlight is the main source of vitamin D, converting it into previtamin D3, tachysterol, and 
lumisterol through photoconversion. UVB radiation facilitates the formation of vitamin D3, while 
lumisterol and tachysterol help prevent vitamin D overproduction during prolonged sun exposure. 
Vitamin D is essential for maintaining serum calcium and phosphate levels, critical for bone 
mineralization, muscle contraction, nerve function, and preventing hypocalcemic tetany. Vitamin D aids in 
absorbing approximately 40% of calcium and 80% of phosphorus with the help of 1,25(OH)2D [123]. 
Vitamin D3, produced in the skin, must undergo further metabolic steps to become active. It is first 
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hydroxylated in the liver, followed by 1α-hydroxylation by the enzyme CYP27B1, which forms 
1,25(OH)2D, the most potent vitamin D metabolite [124]. 
Cutaneous Production of Vitamin D3 
Studies by Holick et al. showed that pre-D3 production under UV irradiation occurs rapidly, reaching peak 
levels within hours. UV exposure also converts pre-D3 into lumisterol and tachysterol. Although pre-D3 
levels peak early, lumisterol continues to accumulate with extended UV exposure, while tachysterol does 
not accumulate significantly [125]. 
Renal Production of 1,25(OH)2D 
Vitamin D's hormonal effects are mainly mediated by 1,25(OH)2D, its most potent metabolite. The 
enzyme CYP27B1 converts 25OHD into 1,25(OH)2D, expressed not only in epidermal keratinocytes and 
renal tubules but also in other tissues such as the brain, placenta, testes, intestines, lungs, breast, and 
macrophages. The kidney remains the primary source of circulating 1,25(OH)2D, though extra-renal 
CYP27B1 production can meet local needs. CYP27B1 activity is regulated by factors such as PTH, FGF23, 
calcium, phosphate, and 1,25(OH)2D itself. Cytokines like IFN-γ and TNF-α can stimulate extra-renal 
production, though the exact mechanism behind PTH regulation remains unclear. 
Mechanism of Action 
1,25-DHCC elevates blood calcium levels by: 
 Promoting dietary calcium absorption in the gastrointestinal tract. 
 Enhancing renal calcium reabsorption, reducing urinary calcium loss. 
 Stimulating calcium release from bones. 
Calcitriol stimulates osteoblasts to release RANKL, which activates osteoclasts. In cooperation with PTH, 
calcitriol indirectly promotes osteoclast activity by increasing phosphate excretion from the kidneys, 
leading to bone demineralization and increased serum calcium levels. PTH also stimulates calcitriol 
production. Calcitriol exerts its effects through the VDR, which, upon binding to calcitriol, moves to the 
nucleus to enhance the expression of genes responsible for producing calcium-binding proteins, 
improving the absorption of calcium and phosphate from the intestines. Although calcitriol stimulates 
bone resorption, its role in increasing serum calcium results in overall bone accumulation due to the 
enhanced intestinal calcium absorption [126-129]. Additionally, calcitriol inhibits the release of 
calcitonin, a hormone that decreases blood calcium by suppressing bone resorption. 
1,25-Dihydroxycholecalciferol and Orthodontic Tooth Movement 
Research has shown that local administration of 1,25-DHCC and PGE2 in rats significantly increases the 
rate of orthodontic tooth movement (OTM) compared to controls. 1,25-DHCC is more effective than PGE2 
in bone remodeling during OTM due to its balanced influence on bone formation and resorption. Local 
injections of 1,25-DHCC stimulated bone formation, aiding in the re-establishment of supporting 
structures, particularly the alveolar bone, after orthodontic treatment. Vitamin D promotes osteoclast 
differentiation and activity, leading to increased bone resorption and faster OTM [133, 134]. Early studies 
demonstrated that injecting vitamin D metabolites increased osteoclastic and osteoblastic activity 
throughout the experiment. Intraligamentary injections of vitamin D metabolites enhanced osteoclast 
activity, resulting in faster canine retraction. 1,25-DHCC administration increased the presence of 
osteoblasts on the external alveolar bone surface, accelerating OTM more effectively than PGE2 [135-
138]. Beyond promoting new bone formation, calcitriol stabilizes teeth post-OTM. A temporary increase 
in bone resorption occurs within the first two days of calcitriol administration, followed by bone 
formation after 14 days. In orthodontic patients with vitamin D deficiency, OTM may be slower, with 
younger patients exhibiting faster tooth movement and higher osteoclast counts than older individuals. 
Enhanced canine distalization and reduced cancellous bone density have been observed with local 1,25-
DHCC administration, leading to improved OTM rates. A strong correlation between serum and salivary 
vitamin D levels underscores its importance in orthodontic treatment. Additionally, vitamin D modulates 
immune responses in periodontal cells, reducing inflammatory responses while promoting anti-
inflammatory cytokine secretion, supporting its role in accelerating OTM [139, 140]. 
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Table 1: Table showing comparison of characteristics between blood and saliva sample collection. 
Characteristics Blood Saliva 

Storage Refrigeration required for stability Stable at higher temperatures 
Patient compliance Phlebotomy required Self-administered 
DNA quantity 4.5 to 11x105 WBS yielding 10-

18µg/ml of genomic DNAHigh 
amount 

4.3x105 cells/ml 
(Epithelial or leucocytes) 
DNA                             Good 
amounts 

DNA quality High with minimal contamination Contamination commonly found 
Genome wide analysis High call rate High call rate 
DNA methylation analysis Good Comparable with blood 
PCR analysis Good analysis Good analysis 

 
Table 2. Table showing a comparison cAMP and cGMP pathways 

 cAMP cGMP 
Stimuli Hormonal & Mechanical Intracellular regulator of endocrine & non 

endocrine 
Action           
  

Phosphorylation of specific substrate proteins by its 
dependent protein kinases 

Specific substrate proteins by cGMP- 
dependent protein kinases 

Alteration in 
level 

Synthesis of polyamines, nucleic acids, proteins and 
secretion of cellular products 

Synthesis of nucleic acids, proteins and 
secretion of cellular products. 

 
CONCLUSION  
In summary, the relationship between salivary cytokine IL-17A and 1,25-dihydroxycholecalciferol 
(1,25(OH)2D3) levels during orthodontic treatment reflects complex interactions between inflammatory 
responses and bone metabolism. Current literature suggests that orthodontic interventions influence 
salivary IL-17A and 1,25(OH)2D3 levels, which correlate with local immune and bone remodeling 
processes. However, inconsistencies and gaps in the evidence necessitate further research to clarify these 
mechanisms and their clinical implications. Future studies should focus on longitudinal investigations 
with larger sample sizes to better understand the dynamics of IL-17A and 1,25(OH)2D3 throughout 
orthodontic treatment stages. Additionally, exploring the link between salivary biomarker levels and 
treatment. 
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