Advances in Bioresearch

Adv. Biores., Vol 16 (4) July 2025: 255-270 ©2025 Society of Education, India Print ISSN 0976-4585; Online ISSN 2277-1573 Journal's URL:http://www.soeagra.com/abr.html CODEN: ABRDC3 DOI: 10.15515/abr.0976-4585.16.4.255270

REVIEW ARTICLE

Endophytic fungi—Alternative sources of Pharmacologically Significant Compounds: A Review

Sagar M S and Rashmi N G*

Department of Pharmaceutical Analysis, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B G Nagar, Mandya, Karnataka, India.

*Corresponding Author: ng.rashmi85@gmail.com

ABSTRACT

Fungal endophytes have been extensively studied due to inherent abilities to produce secondary metabolites which has great pharmacological significance. These fungi alive within ethe plant tissues and do not harm ethe host plant. The have been shown to produce chemicals that have strong antioxidant, anticancer, and antibacterial effects. The ability of endophytic fungus to yield new bioactive chemicals makes them valuable in the field of medicinal chemistry. Recently, researchers shown great interest in ethe isolation and identification of pharmacologically important substances generated from endophytic fungus. The bioactive components in ethe isolated endophytic fungus were determined by spectrum analysis and chromatographic separation. The potential antibacterial activity of ethe chemicals produced from the fungus was further investigated in ethe pharmacological, industrial and agricultural sectors. This review has demonstrated the presence of a broad class of secondary metabolites in endophytic fungal extracts that are similar to host plant extracts.

Keywords: Antimicrobial, Bioactive compounds, Endophytic fungi, Secondary metabolites

<u>Received 10.04.2025</u> Revised 21.05.2025 Accepted 11.07.2025

How to cite this article:

Sagar M S and Rashmi N G. Endophytic fungi—Alternative sources of Pharmacologically Significant Compounds: A Review. Adv. Biores., Vol 16 (4) July 2025: 255-270.

INTRODUCTION

An endophyte typically belongs to fungi family that coexists with a plant without appearing to cause any harm[1]. Endophytes are omnipresent and may be found in every type of plant, including stems, leaves, roots, and petioles. Because they keep harmful organisms from invading host plants, endophytes may be advantageous to them [2]. The common name for Elaeocarpus sphaericus is Rudraksha. It is a huge, broadleafed, evergreen tree that grows in Himalayan range of India. [3] The plant rudraksha sometimes referred to as the "king of Herbal Medicine," is applied in conventional medicine to address a range of ailments, including liver illnesses, asthma, hypertension, anxiety, depression, palpitations, nerve pain, epilepsy, and migraines. [4] Myristica fragrans is a 5-13 m tall tiny evergreen tree. Which belongs to Myristicaceae family and frequently referred to as nutmeg. It has been found to provide several health benefits and is an important herb in Ayurvedic treatment. It has astringent, aromatic, digestive, and appetizer properties.[5] Endophytic fungi (EF) have prevalent source of secondary metabolites (SM) which includes intriguing structures and pharmacological activities. It is commonly recognized that some species of ascomycetes, both sexual and asexual, as well as rarely basidiomycetes and zygomycetes, may live in ethe vascular plant's aerial tissues without showing any symptoms. According to reports, these endophytic fungi mostly occur in conifers [6][7]. A few tropical plants have also been investigated for the existence of endophytes, such as mangroves [8], bananas [9], and palms [10].

THE CULTIVATION AND EXTRACTION OF ENDOPHYTIC FUNGI

Study on EF conducted in Bangladesh which is separated from *Syzygium cumini* plant in Bangladesh to investigate their pharmacological properties and plant constituents [11]. Nearly, 8 fungal isolates were examined through molecular and morphological strategies which includes "*Phyllosticta sp., Fusarium sp., Penicillium sp., Diaporthe sp., and Pestalotiopsis sp."* and preliminary screening revealed that the fungal

and plant extracts contain "anthraquinones, isocoumarins flavonoids and coumarins" [12]. The *Penicillium sp.* fungal extraction demonstrated significant level of free radical scavenging action, nearly as effective as ascorbic acid. Several fungal extracts exhibited cytotoxic activity, suggesting the abundance of biologically active metabolites [13]. The leaf as well as bark extracts presented antifungal and antimicrobial action, while Penicillium sp. and Pestalotiopsis sp. preparations were susceptible to test microorganisms. Present research analysed the pharmacological potential of EF of *Syzygium cumini* in Bangladesh and explores new chemicals derived from these endophytes. The study outcomes discussed the potential pharmaceutical applications EF in bioactive utilisation [14].

ISOLATION, CULTIVATION AND ENDOPHYTIC FUNGI'S ANTIMICROBIAL ACTION

The EF is separated from the medicinal plant Tupistra echinensis Baker in China's Qinling Mountains exhibited diverse antimicrobial properties [15]. Analysis of ITS rDNA sequences identified 371 fungal isolates related to 35 genera across three phyla. Mostly, genera were *Aspergillus, Fusarium, Dactylonectria, and Collectotrichum*. HPLC and UPLC-QTOF MS evaluation revealed two lead compounds with strong antimicrobial activity from strains F8047 and F8075[16]. Metabolites extracted through EF RS-5 is further isolated from Pteris pellucida which showed notable antibacterial effects against *S. aureus* and *A. hydrophila*, and antifungal effects against *Curvularia sp., Fusarium sp.,* and *Cornyespora sp.*

NOVEL ENDOPHYTIC FUNGI BIOACTIVE COMPOUNDS: THEIR BIOLOGICAL CHARACTERISTICS

Endophytic fungus has shown a variety of bioactive metabolites with multiple biological effects, including "antioxidant, antibacterial, anticancer immunosuppressive, anti-inflammatory, antiviral, antiparasitic, antifungal and properties" [17]. Agarwal and associates [18] acknowledged that several investigations have demonstrated that endophytes had defense mechanisms to thwart pathogenic invasion by generating secondary chemicals [19][20][21]. Bioactive metabolites are small organic molecules produced by bacteria, with lower antimicrobial activity compared to other substances with potential antibiotic properties. Endophytes produce antibacterial compounds that belong to different structural classes, including phenols, quinines, terpenoids, peptides, alkaloids, and flavonoids [22]. In Santiniketan, "Endophytic Alternaria alternate" (AE1) was detected in mature, healthy leaf of *Azadirachta indica* plants. The fungal extraction presented impressive antimicrobial effects against different bacteria, including "*Staphylococcus epidermidis* MTCC 2639, Bacillus subtilis MTCC 121, *Pseudomonas aeruginosa* MTCC e741, *Salmonella typhimurium* MTCC 98, Escherichia ecoli MTCC 1667, *Staphylococcus aureus* MTCC 96 and eat MICs" ranging from 300 to 400 μg/mL. In a study conducted in 2000 by Peláez and colleagues, it was found that a promising antifungal triterpene glycoside exhibited inhibitory effects against *Aspergillus esp.* and Candida, with diameters of 19 mm and 30 mm, respectively. [23].

Identification of New Bioactive Compounds and their Biological activities

- A. Polyketides
- a. Chromones
- b. α -Pyrones
- c. Other Polyketides
- B. Alkaloids
- a. Cytochalasin
- b. Indole Alkaloids
- c. Diketopiperazine Derivatives
- d. Other Types of Alkaloids
- C. Terpenoid
- a. Sesquiterpenoids and Their Derivatives
- b. Diterpenoids
- c. Triterpenoids
- d. Meroterpenoids
- D. Lactones
- E. Anthraquinones, Quinones and Related Glycosides
- F. Steroids
- **G.** Other Types of Compounds [24].
- A. Polyketides
- a. Chromones

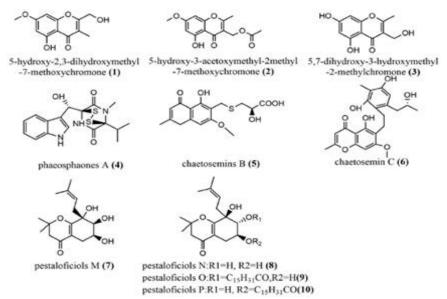


Figure: 1 Phaeosphaonesa A 4 and other bioactive compounds

Specifically, to enhance the synthesis of compounds 1, 2, and 3 in their designated production sites within the regions. With "minimum inhibitory concentrations" (MIC) of $50\mu g/mL$, $50\mu g/mL$, and $6.25\mu g/mL$, respectively, compounds 1-3 showed significant antibacterial effect against *Fusarium oxysporum*. These results were better than the antimicrobial test results for triomefon, the medication that tested positive (MIC value: $100\mu g/mL$) [25]. Phaeosphaonesa A4 (Figure 1) was found in *Phaeosphaeria fuckelii* and has a distinct structure with a β -(oxy) thiotryptophan motif. At a concentration of $100\mu M$, Compound 4 exhibited significant inhibition on mushroom tyrosinase (IC50, $40.4~\mu M$) than kojic acid (IC50, $33.2~\mu M$ [26]. Two "fragrant chromones, Chaetosemins B-C 5-6", were discovered in the brown rice cultures of *Chaetomium seminudum*. Compounds 5-7 each had units of "L-cysteine and D-cysteine", respectively. [27]. Compounds 7–8 showed ability to inhibit "HIV-1 repetition in C8166 cells", with EC50 having 56.5 μM and $10.5~\mu M$, respectively. Compounds 9–10 presented cytotoxic impact on the human cancer cell line HeLa, with IC50 values of 56.2 μM and 74.9 μM , respectively. "Compound 10 showed significant impact on antifungal responses against "Aspergillus fumigatus" with an IC50 of 7.35 μM .

α-Pyrones

Two alpha-pyrone derivatives, named Necrospora eudagawae eudagawanones A-B (11-12), were discovered in a fungus inside oak trees [28]. These substances have unique oxidation units located at the C-2 region. Compound 11 demonstrated considerable antifungal properties against "Rhodoturula glutinis", with a MIC of 66 μ g/mL. Additional research is required to confirm the limited effectiveness of substances 11 and 12 against different types of fungus and mammalian tissues. This may be attributed to the antimicrobial technique utilized, which included diluting the substances in a series [29]. The" Aspergillus *niger*" MA-132, extracted through "Avicennia marina, synthesized nigerapyrones A-B" (13-14), which exhibited significant antifungal properties against HL60 and A549 tumor cell paths, with IC50 (0.3-5.41) μ M. The user's text is [30]. The "Ficipyrones A-B" (15-16) were obtained from solid extracts of "Pestalotiopsis fici." Substance 15 exhibited potent antifungal properties towards "Gibberella zeae CGMCC 3.2873", with an IC50(15.9 μ M).

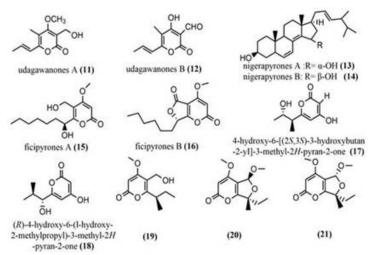


Figure: 2 Ficipyrones A-B and other bioactive compounds

Other Polyketides

The EF Phoma sp. from marine red algae NTOU4195 yielded "phomaketides A-E (22-26), pseurotins A3 (27), and G (28)". Compound 22 showed significant anti-angiogenic properties (IC50 8.1 μM), and compound 24 inhibited NO in "LPS-induced RAW264.7 cells" (IC50 8.8 µM).[31] Simplicilones A-B (29-30), isolated from Duquetia staudtii via Simplicillium sp., were ineffective against "Bacillus subtilis DSM 10 and Staphylococcus aureus DSM" 346 but showed cytotoxicity on the KB3.1 cell line (IC50 1.25 and 2.29 µg/mL).[32] The "Cladosporium cladosporioides MA-299" isolated from "Bruquiera gymnorrhiza" leaf produced "5R-hydroxyrecifeiolide (31), 5S-hydroxyrecifeiolide (32), and ent-cladospolide F-H" (33-35). The substances demonstrated antibacterial efficacy towards "Staphylococcus aureus and E-coli", with minimum inhibitory concentrations interval from 1.0 to $64\mu g/mL$. Compound 33 exhibited a modest level of inhibition against acetylcholinesterase (IC50 40.26μM). Aspergillus fumigatiaffinis produced the antibacterial compound palitantin (36), effective against "Enterococcus faecalis UW 2689 and Streptococcus pneumoniae 25697" (MIC 64 µg/mL).[33-35] Alternaria alternata ZHJG5 in Cercis chinensis leaves yielded bialternacin G (40), (+/-)-50-dehydroxytalaroflavone (38-39), and isotalaroflavone (37). Compound 37 had significant effects against rice blight from Xanthomonas oryzae pv. oryza (75.1% protection at 200µg/mL).[36] Peyronetides A-D (41-44) from Peyronellaea sp. FT431 showed moderate to mild cytotoxicity on TK10 human kidney cancer and A2780cisR human ovarian tumor tissues (IC50 6.7 to 29µM).[37] Compound 45 showed mild cytotoxic properties on HepG2 and Hela cell lines, with IC50 > 20uM.[38]

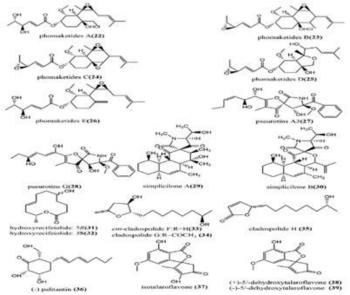


Figure 3 Peyronetides A-D and other bioactive compounds

Alkaloids

Cytochalasin

Phomopsis sp. sh917 brown rice cultures yielded Phomopsisin A-C 46-48 (Figure 4) with a methylationdeficient backbone when extracted from "Isodon eriocalyx var. laxiflora stems". Compound 46 showed superior performance compared to the "positive control L-NMMA (IC50 value of 42.34 µM) in inhibiting NO production in RAW264.7 cells produced by LPS, with an IC50 value of 32.38eμM" [39]. Compound 46 contained a unique tetracyclic ring structure with a special 2H-isoxazole group. The extremely oxidized cytochalasin alkaloids were discovered and separated from Chaetomium globosum TW1-1. These include "7-O-acetylarmochaetoglobin S50 and armochaetoglobins S-Z 49-57" in Figure 4. The impact of each molecule was evaluated on five human tumour cells such as "HL-60, A-549, SMMC-7721, MCF-7, and SW-480" using MTT approach. Compounds 56-57 demonstrated notable cytotoxic effects, with IC50 values falling between 10.45 and 30.42 μM [40]. Furthermore, the MTS technique was employed to assess the cytotoxic effects of "diaporthichalasins D-H 58-62" (Figure 4) on 4 different types of human tumour cell such as "A549, HeLa, HepG2, and MCF-7". The specimens were derived from robust preparations of the EF "Diaporthe esp. SC-J0138" that were collected from the leaves of the "fern Cyclosorus parasiticus". Compound 58 shown substantial cytotoxic in all tested human tumour cells, while Compounds 59-62 showed specific cytotoxic impacts on several cell types [41]. The EF "Cytospora chrysosperma HYQZ-931", which was discovered in "Hippophae rhamnoides", produced "cytochrysins A-C 63-65", when grown in rice cells (Figure 4). Compound 63 demonstrated strong antibacterial efficacy against "Enterococcus faecium", with a MIC of 25 μg/mL. Compound 65 had strong antibacterial effects against "Staphylococcus aureus", MIC (25 μg/mL)[42].

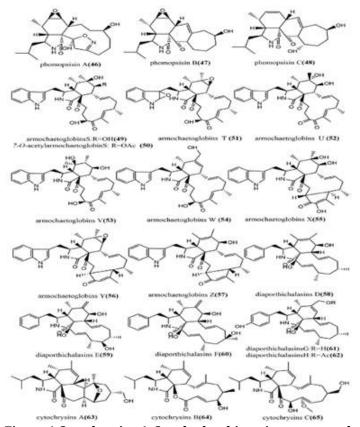


Figure 4 Cytochrysins A-C and other bioactive compounds

Indole Alkaloids

The six "prenylated indole alkaloids (asperthrins A-F, 66-71)" were extracted from the EF Aspergillus sp. found in marine environments.[43] Compound 66 showed moderate antibacterial activity (MIC 8µg/mL) and strong anti-inflammatory effects (IC50 1.46 µM) along with compound 69 (IC50 30.5µM).[44] Oxalicine C (72) from Penicillium chrysogenum exhibited strong antibacterial activity against Ralstonia solanacearum (MIC 8 µg/mL). Scalarane (73) from Hypomontagnella monticulosa showed significant cytotoxicity towards "Panc-1, NBT-T2, and HCT116 cancer cell lines" [45] (IC50 0.05-0.75 µg/mL).

Asperlenines A-C (74-76) from *Aspergillus lentulus* demonstrated medium to low antibacterial activity against "*Xanthomonas oryzae* pv. Oryzicola" (MIC 25-100 μ g/mL). All compounds were evaluated against five agricultural diseases using the broth microdilution method [46]

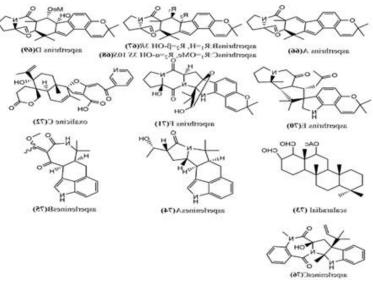


Figure 5 Bioactive compounds

Diketopiperazine Derivatives

Phaeosphaones D (77), a thiodiketopiperazine alkaloid from *Phaeosphaeria fuckelii* in *Phlomis umbrosa*, exhibited stronger mushroom tyrosinase inhibition (IC50 33.2 μM) [47] compared to kojic acid (IC50 40.4 μM). *Paecilomyces variotii* EN-291 microalgae yielded varioloids A-B (78-79), showing significant antifungal activity against *Fusarium graminearum* (MIC 8μg/mL and 4μg/mL)[48]. The "Aspergiamides A-F" (80-85) from *Aspergillus sp.* demonstrated moderate to strong α-glucosidase inhibition, with compounds 80 and 81 having IC50 (18.2μM and 40.7μM) respectively, but no significant effect on PTP1B[49]. *Penicillium brocae* MA-231 produced penicibrocazines A-E (86-90), with potent antibacterial efficacy against "*Staphylococcus aureus* (MIC 0.25 to 32μg/mL). Spirobrocazines A-C (91-93)" from the same fungus showed slight antibacterial effects on "*Aeromonas hydrophilia* and *Vibrio harveyi*" (MIC 16 to 64 μg/mL)[50].

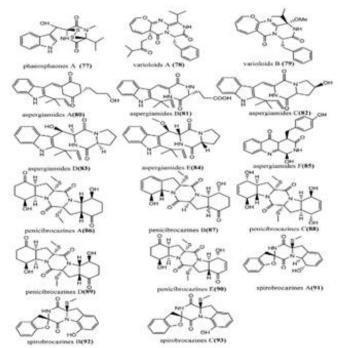


Figure 5 Bioactive compounds

Other Types of Alkaloids

Penicillium vinaceum X1, an EF from Crocus sativus corms, produced the alkaloid compound 94, which showed slight cytotoxic effects on "A549, LOVO, and MCF-7[51] human carcinoma cell lines (IC50 values: 76.83, 68.08, and 40.55μg/mL, respectively)". Acanthodendrilla sp. from a sponge yielded "bromotyrosine alkaloids S-Acanthodendrilline (95) and R-Acanthodendrilline" (96). Compound 95 was three times more effective against H292 cells than compound 96, with IC50 values of 58.5μM and 173.5μM, respectively.[52] Penicillium sumatrense from Garcinia multiflora leaves produced citridones E–G (97–99), showing moderate to poor antibacterial activity against "Pseudomonas aeruginosa, Staphylococcus aureus, and E-coli" (MIC 32-128μg/mL)[53]. The "New isoprenylisoindole alkaloids, diaporisoindoles A-B" (100–101) were extracted from "Diaporthe sp. isolated and the mangrove plant (Excoecaria agallocha)". Compound 100 exhibited potent suppression of "Mycobacterium TB protein-tyrosine phosphatase B", with an IC50 value of 4.2μM [54].

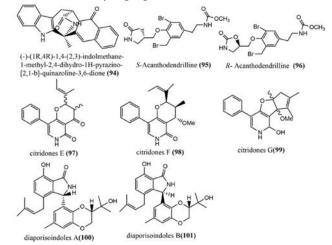


Figure 6: Bioactive compounds of other types of alkaloids

Terpenoids

Sesquiterpenoids and their Derivatives

The EF Diaporthe sp. from mangrove Rhizophora stylosa synthesized 1-methoxypestabacillin B (107), [55] which, while non-virucidal against HIV and influenza A, may serve as a foundation for potent antiviral compounds. Rhizoperemophilanes A-N (102–115) from Rhizopycnis vagum showed selective cytotoxicity, with compound 115 being notably effective against "NCI-H1650 and BGC823 cell lines (IC50: 15.8 μ M and 48.2 μ M, respectively)"[56] and compounds 106-107 and 113-114 displaying significant phytotoxic effects on rice seedlings. Trichoderma sp. extracted from Paeonia delavayi stems yielded trichoderic acid (116) and 2 β -hydroxytrichoacorenol (117), with moderate to poor antibacterial properties against "E-coli and Shigella sonnei" (MIC: 50-175 μ g/mL). Fusarium proliferatum from Chlorophytum comosum roots produced α -pinene sesquiterpenes (118-119) with slight antibacterial effects against MRSA and other bacteria (MIC > 100 μ g/mL).[57] The EF "Aspergillus sydowii from marine red algae produced (7S, 8S)-8-hydroxysydowic acid (120)", a potent DPPH radical scavenger (IC50: 113.5 μ mol/L). Ulocladium sp. yielded ophiobolins P-T (121-125), showing moderate antibacterial activity (MIC: 15.6-62.5 μ M) and significant cytotoxicity against HepG2 cells (IC50: 0.24 μ M).[58][59] Trichoderma virens from Artemisia argyi roots produced trichocarotins I-M (126-130), exhibiting strong antibacterial effects against E. coli (MIC: 0.5-16 μ g/mL).[60]

Diterpenoids

Cultures of the EF *Diaporthe sp.* derived from mangroves. QYM12 produced diaporpenoid A 131, a ring diterpene with a tricyclic ring structure that is fused in a 5/10/5 arrangement (Figure 10). The extract was prepared with MeOH. Compound 131 displayed impressive anti-inflammatory properties in the RAW264.7 murine macrophage cell line by inhibiting the generation of NO induced by LPS, with an IC50 of 21.5 μ M. compound called libertellenone M 132, a diterpene of the pimarane type, was found in the marine endophytic fungus Phomopsis sp. S12 [61] remains unchanged. Compound 132 effectively suppressed the "mRNA expression of pro-inflammatory cytokines IL1 β and IL-18 in colon tissue". Furthermore, it significantly decreased the splitting of pro-caspase1 and hindered the movement of NF- κ B to the nucleus in macrophages, with the extent of these effects being dependent on the dosage. Administering different intravenous dosages of compound 132 (10 or 20 mg/kg) reduced the severity of

symptoms in a rat model of acute colitis caused by 3% "dextran sulphate sodium". Compound 132, a powerful inhibitor of NLRP3 inflammatory vesicles, is regarded as a potentially efficacious novel treatment for acute colitis e[62]. The EF Phomopsis sp. was shown to contain three distinct "epimarane diterpenoids: pedinophyllol K 133, pedinophyllol L 134, and libertellenone T 135". The OSMAC approach was used to elucidate the attributes of S12 culture. Additionally, compounds 133-134 showed antiinflammatory properties comparable to compound 135, especially in suppressing IL-6 [63]. Two "Botryosphaerins G-H 136-137, tetranorlabdane diterpenoids" were separated through "ethyl acetate" extract of "Botryosphaeria sp. P483". Huperzia serrata Trev, also known as Thunb, was a plant that induced isolation. The antifungal properties of these substances were valuated using the disc diffusion method against Fusarium solani, Pyricularia oryzae, and Gaeumannomyces graminis. Compound 137 displayed significant antifungal efficacy with a 9 mm inhibitory zone diameter at a dosage of 100 µg/disk. The positive control carbendazim showed inhibitory zone diameters ranging from 15 to 18 mm. Compounds 136-137 were tested for their ability to kill "Panagrellus redivivus and Caenorhabditis elegans" as well as their antifungal properties. At a concentration of 400 mg/L for 24 hours, they demonstrated moderate nematicidal effects with mortality rates of 30% and 28%[64]. At a concentration of 1.5 μ M, Sphaeropsidin A 138, an isopimarane diterpene, hindered the movement of "MDA-MB-231 cells" by 50% and displayed strong preference for five human cancer cell lines. It was obtained from the EF Smardaea sp. AZ0432 is a strain of Ceratodon purpureus [65]. Substance 139, obtained from Pestalotiopsis adusta cultures isolated from Clerodendrum canescens stems, showed modest cytotoxicity against HL-60 tumor cells with an IC50 of 12.54µM[65]. Asperolides A-C 141-143, new tetranorlabdane diterpenoids found in the Aspergillus wentii EN-48 maine brown alga extract, showed moderate cytotoxicity against seven human cancer cell lines with IC50 values ≤ 10µM[66].



Figure 7: Diterpenoids and other types of Bioactive compounds

Triterpenoids

The 24-homo-30-nor-cycloartane triterpenoid 154 (Figure 11) was obtained from the endophytic fungus *Mycoleptodiscus indicus* FT1137. Little effect against the human ovarian tumour cell line A2780[67] was observed at a concentration of 20μg/mL. From Scleroderma UFSMSc1, Eucalyptus grandis cultures yielded three "Lanostane-type triterpenes: lanosta-8,23-dien-3β,25-diol 146" (Figure11) and "sclerodols A–B 144–145" (Figure 11). The agar diffusion approach was employed to analyse their antifungal effects on *Candida albicans* and *Candida parapsolosis*. Compounds 144–146 exhibit mild to weak antifungal effectiveness with MIC values ranging from 12.5 to 50μg/mL. Their ability to inhibit "selenocysteine methyltransferase" (SMT) activity facilitated the antifungal actions of these substances against *Candida albicans* [68]. Acremonium pilosum F47, an EF obtained from the stem of *Mahonia fortunei*, synthesized fusidic acid 147 (Figure 11). It showed strong antibacterial activity when examined against "*S. aureus* ATCC 6538 and B. subtilis ATCC 9372". In order for Compound 147 to exhibit antibacterial effects, the C-

16 hydroxyl group must be acetylated [69]. Two recently discovered "glometenoid A-B" 148-149 (Figure 11) triterpenoids were found in the "ethyl acetate" extract of the EF Glomerella sp. F00244 that prospers among mason pines. Compounds 148–149 were experimented on to determine their cytotoxic impact on the HeLa human ovarian tumour cell line through the MTT assay. Compound 148 exhibited a mild cytotoxic impact, demonstrating a 21% inhibition at a dosage of 10 µM [70]. Nine highly oxygenated schitriterpenoids, such as 7β-schinalactone C 158 and cadhenrischinins A-H 150-157 (Figure e8), were isolated from Penicillium sp. SWUKD4.1850 remains unchanged. Compounds 154-157 exhibit a distinct 3-one-2-oxabicyclo [1,2,3]-octane structure. The MTT test was used to study the cytotoxicity of each drug on HepG2 tumor cells. The compounds displayed slight cytotoxic effects, as evidenced by their IC50 values, varying between 14.3 and 40μM. Two "tetracyclic triterpenoids" (TT) called integrateacide E 159 (Figure 11) and "isointegracide E 160" were obtained from the "mycelia of Hypoxylon sp. 6269". Compound 159 showed a slight ability to inhibit HIV-1 integrase, with an IC50 measurement of 31.63 μM [71]. The TT H-J 161-163 (Figure 10) were derived from the roots of Mentha longifolia L. (Labiatae) by the endophytic fungus Fusarium sp. These integracides were later examined for their effectiveness in inhibiting the growth of L. donovani promastigotes. Compound 161 demonstrated a notable "antileishmanial effect with an IC50 of $4.75\mu M$, surpassing the IC50 value of $6.35\mu M$ for pentamidine, the positive control" [72].

Figure 8 schitriterpenoids -7β-schinalactone and others

Tetracyclic triterpenoids, also known as integracides F–G 164–165 (Figure 11), were found in the EF Fusarium sp. derived from "Mentha longifolia L. (Labiatae)". Compounds 164–165 were tested for their anti-leishmanial and cytotoxic effects on "BT-549 and SKOV-3 cells", and also on "Leishmania donovani promastigotes". Compounds 164–165 exhibited significant cytotoxicity against "SKOV-3 and BT-549 cell lines", showing IC50 values between 0.16 to 1.97 μ g/mL and 0.12 to 1.76 μ g/mL, respectively. (The IC50 value for pentamidine, which served as the positive control, was noted to be e2.1 μ g/mL.) Compounds 164-165 exhibited potent antileishmanial effects on L. donovani promastigotes, with IC50 values of 3.74 μ g/mL and 2.53 μ g/mL, respectively[73].

Meroterpenoids

Guignardones P–S 166–169 were sourced from cultures of "Guignardia mangiferae A348" (Figure 12). Compounds 166–169 were experimented on to determine their cytotoxic impact on three different human cancer cell lines ("SF-268,MCF-7, and NCI-H460") through the MTT. It was reported that Compounds 167 and 169 exhibited slight cytotoxicity against MCF-7 cell lines, with IC50 (83.7 to 92.1) μ M [74].

Figure 9 Meroterpenoids

Emeridones A-F 170-175 (Figure 9), derived from *Emericella sp.*, are six meroterpenoids based on 3, 5-demethylorsellinic acid. Cultures of TJ29. Compound 171 consists of two parts: "2,6 dioxabicycloe[2.2.1] heptane and a spiro [bicycle [3.2.2] nonane-2,1'-cyclohexane]. The MTT test was used to evaluate the cytotoxic impacts of each drug on five human cancer cell lines (HL-60, SMMC7721, A549, MCF-7, and SW-480)". The cell lines showed mild toxic effects from compounds 172, 173, and 175 [75]. Compounds A-C 176–178 known as phyllomeroterpenoids were isolated from the raw extract of *Phyllosticta* sp. fermentation broth J13-2–12Y. Compounds e175–176 showed decent antibacterial effects with MIC levels varying from 32 to 128 μ g/mL against "*Staphylococcus aureus* 209P, Candida aureus 209P, and Candida albicans FIM709" [76]. Austin 179 (Figure 9) showed significant trypanocidal effect against T. cruzi at 100 μ g/mL, with an IC50 value of 36.6 μ M. This portion was taken from the co-cultures of "*Talaromyces purpurogenus* H4 and Phanerochaete sp. H2". Restate the following passage using the same source language while preserving the word count [77].

Lactones

The bacterium "Talaromyces assiutensis JTY2", which was discovered in "Ceriops tagal leaves", synthesized Helicascolide F 180 (depicted in Figure 10). Study assessed the harmful effects of Compound 180 on 3 kinds of human tumor cells ("HeLa, MCF-7, and A549") by using the MTT test. Compound 180 had a mild hazardous impact on all tested cell lines, with an IC50 value ranging from 14.1 to 38.6µM [78]. Two "beta-lactones, namely polonicin A and B 181-182" (Figure 10), were extracted from brown rice cultivation of the EF "Penicillium polonicum" found in the fruit of "Camptotheca acuminata". Compound 181 exhibited 1.8 times more effective glucose absorption than the control at a conc. of $30\mu g/mL$ in the L6 rat skeletal myoblast cell line. The impact of Compound 182 on the movement of GLUT4 was analyzed using "fluorescent protein IRAP-mOrange", a protein that is consistently produced in L6 cells. It demonstrated a 2.1-fold rise in fluorescence intensity on L6 cell surfaces when compared to control samples that were not treated [79]. Chaetocuprum 183, a spirodilactone compound, was produced by cultivating Wild Anemopsis californica's endophytic fungus Chaetomium cupreum in New Mexico, USA (Figure 11). A MIC value of 50µg/mL for Compound 183 showed a moderate antibacterial effect on S. aureus [80]. The phytotoxic compound 184, a bicyclic lactone with the molecular structure ("3aS,6aR)-4,5-dimethyl-3,3a,6,6a- -2H-cyclopenta[b]furan-2-one" was separated from the fermentation "broth of Xylaria curta 92092022". Compound 184 was tested for its impact on lettuce seedlings and its ability to combat four "pathogens (Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus NBRC 13276,

Aspergillus clavatus F318a, and Candida albicans ATCC 2019)". Compound 184 possessed a unique fusion mechanism involving 5 rings, each with a rating of 5. Compound 184 exhibited modest antibacterial activity against "Pseudomonas aeruginosa ATCC 15442 and Staphylococcus aureus NBRC 13276" at a conc. of 10µg/disk, yielding in inhibitory region diameters of 13 mm and 12 mm, respectively. Further, compound 184 demonstrated 50% suppression on lettuce roots measuring 1.6 ± 0.3 cm when present at a concentration of 25μg mL -1. The control group, on the other hand, had lettuce roots measuring 3.2 ± 0.5 cm. Compound 184, at a conc. of 200µg mL -1, significantly hindered the sprouting of lettuce seeds, resulting in a 90% reduction [81].Lasiodiplactone A 185 is synthesized by Lasiodiplodia theobromae, an endophytic fungus found in mangroves. It has a distinct tetracyclic structure of RAL 12, with pyran and furan rings. Compound 185 displayed impressive anti-inflammatory properties by effectively blocking NO production in RAW 264.7 cells stimulated by LPS, with an IC50 value of 23.5µM. In comparison to indomethacin, which has an IC50 of 26.3 µM, the positive control showed greater resilience. Additionally, compound 185 displayed a higher IC50 value of 29.4 μM for inhibiting α-glucosidase activity compared to the widely used drug acarbose (IC50 = $36.7 \mu M$) [82]. In vitro, an anti-epimastigote test was utilized to evaluate the anti-trypanosomal effects of (+)-"phomalactone" 186 (Figure 13), "hydroxypestalopyrone" 187 (Figure 13), and "pestalopyrone" 188 (Figure 13) extracted from Aspergillus pseudonomiae J1 endophytic fungus cells. Compounds 186-188 exhibited varying levels of effectiveness against trypanosomes, with IC50 values of 88.33µM, 580.19µM, and 0.86µM respectively, indicating moderate to poor activity.

Figure 10 Helicascolide F 180 and others

HPLC for Compound Analysis and Screening of metabolites from endophytic fungi

Carolina Santiago and colleagues used ethyl acetate to extract fungal components from a broth culture, followed by HPLC analysis. Cytotoxic effects on P388 murine leukemic cells and the antimicrobial activities of the fractions were tested. Mass spectrometry, capillary NMR, and the AntiMarin database identified three compounds: "4-hydroxymellein, 1-(2,6-dihydroxyphenyl) ethanone, and 4-hydroxy-6methoxy-3-methyl-3,4 -dihydro-1H- isochromen-1-one"[83] Endophytic fungi from plant leaves were tested for antimicrobial effect using agar well diffusion. HPLC determination was performed using "Dionex P580 system with a Eurospher-10 C18 column and a linear gradient of nanopure water and methanol". Fungal extracts were dissolved in methanol for analysis, and absorption peaks were detected at 235 nm.[84][85]. Ethyl acetate extracts of fungal metabolites, obtained through solid-state fermentation on rice medium, exhibited antifungal and antibacterial properties with MIC values between 0.0625 and 1 mg/mL.[86][87] Secondary metabolites were generated via liquid culture fermentation, and an active component with a molecular weight of 906.4474 g/mol and a retention time of 26.6 minutes was purified using HPLC and LCMS.[88] Between 1997 and 1999, fungal species from plants in Hong Kong were identified, revealing 205 fungal species. The diversity was higher in substrates with robust, highly sclerenchymatic structures. Cucurbita maxima had the fewest endophytes, while Abutilon indicum stems had 14, and Cuscuta reflexa stems yielded 40 different fungi, with a 37% overlap in endophyte assemblages between Abutilon indicum and its parasite.[89]

Key Insights, Emerging Prospects, and Challenges of Endophytic fungi

Endophytes have garnered increasing attention in recent times due to their advantageous impacts on the synthesis of new metabolites that hold significant therapeutic value. Well-known metabolites such as vincristine from *Fusarium oxysporum*, Endophytic fungi are the source of "azadirachtin A and B from *Eupenicillium parvum*, *taxol* from *Taxomyces andreanae*, and quinine from Phomopsis sp." The increasing importance of endophyte secondary metabolites is mostly due to their diverse range of applications,

which include immunosuppressive medications, industrial applications, and pharmaceuticals. Out of 22,500 chemicals generated from microbes, Fungi provided the most (38%) of the bioactive metabolites that were collected, including antibiotics [90]. Recently, the process of finding new drugs has been hindered by the poor rate of antibiotic development and the rise in AMR. Endophytic fungi further adopt the phenomena of "balanced antagonism" with potential existing microorganisms, balancing their virulence and plant defense. [91]. The synthesis of taxol by Paraconiothyrium SSM001 to combat host infections is a crucial illustration of this phenomena [92]. One example of this is their ability to decrease β-glucan-triggered immunity in a variety of plants [93].

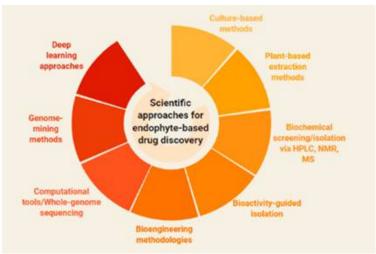


Figure 11: Scientific approaches for endophytic based drug discovery

Utilizing plant-associated endophytes as a biological source for drug development presents a number of difficulties, despite the fact that they have established an appealing "biosynthetic platform" for the synthesis of new bioactive compounds. For instance, the majority of secondary metabolite pathways are suppressed, and a thorough understanding of metabolic networks and processes is necessary. [94][95]. Powerful, low-throughput techniques have been vital to the identification of natural products from endophytes in recent decades [96].

CONCLUSION

Scientists studying pharmaceutical chemistry are now concentrating on creating novel, low-toxic, effective, and safe medications produced using natural resources. With the need for new compounds to be extracted increasing exponentially and quickly in the future, endophytic fungi could offer sustainable supplies of novel bioactive molecules with potential applications in medicine. We can find new, valuable chemicals faster because of recent studies on the synthesis of plant metabolites by endophytic fungi, as well as improvements in structural identification procedures, isolation, extraction and, fermentation culture. The greatest substitute for utilizing pharmacologically bioactive substances in the creation of medications for both human and animal usage might be endophytic fungus.

REFERENCES

- 1. K. Clay and C. Schardl (2002): "Evolutionary origins and ecological consequences of endophyte symbiosis with grasses," in American Naturalist. doi: 10.1086/342161.
- 2. R. X. Tan and W. X. Zou, (2001): "Endophytes: A rich source of functional metabolites," Natural Product Reports, vol. 18, no. 4, 2001. doi: 10.1039/b1009180.
- 3. S. Jain, K. Jatwa, V. Jain, A. Sharma, and S. C. Mahajan, (2014): "A Review on *Elaeocarpus Sphaericus* (Rudraksha)," PharmaTutor Mag., vol. 2, no. 7.
- 4. Y. A. Gherbawy and N. A. Hussein, (2010): "Molecular characterization of mucor circinelloides and rhizopus stolonifer strains isolated from some Saudi fruits," Foodborne Pathog. Dis., vol. 7, no. 2, doi: 10.1089/fpd. 2009.0359.
- 5. V. C. Deepthi, S. Sumathi, M. Faisal, and K. K. Elyas, (2018): "Isolation and Identification Of Endophytic Fungi With Antimicrobial Activities From The Leaves of *Elaeocarpus Sphaericus* (Gaertn.) K. Schum. And Myristica Fragrans Houtt." Int. I. Pharm. Sci. Res., vol. 9, no. 7.
- 6. Y. L. Krishnamurthy, S. B. Naik, and S. Jayaram (1986): "Taxonomy of endophytic fungi of aerial plant tissues," Microbiol. Phyllosph., vol. 23, no. 1.
- 7. O. Petrini and G. Carroll (1981): "Endophytic fungi in foliage of some Cupressaceae in Oregon," Can. J. Bot., vol. 59,

- no. 5, doi: 10.1139/b81-089.
- 8. K. A. Southcott and J. A. Johnson (1997): "Isolation of endophytes from two species of palm, from Bermuda," Canadian Journal of Microbiology, vol. 43, no. 8. doi: 10.1139/m97-113.
- 9. K. F. Rodrigues (1994): "The foliar fungal endophytes of the Amazonian palm Euterpe oleracea," Mycologia, vol. 86, no. 3, 1994, doi: 10.2307/3760568.
- 10. K. B. Brown, K. D. Hyde, and D. I. Guest, (1998): "Preliminary studies on endophytic fungal communities of Musa acuminata species complex in Hong Kong and Australia," Fungal Divers., vol. 1.
- 11. N. S. Chowdhury et al., (2016): "Identification and Bioactive Potential of Endophytic Fungi from *Monochoria Hastata* (L.) Solms," Bangladesh J. Bot., vol. 45, no. 1.
- 12. N. S. Alzoreky and K. Nakahara, (2003): "Antibacterial activity of extracts from some edible plants commonly consumed in Asia," Int. J. Food Microbiol., vol. 80, no. 3, doi: 10.1016/S0168-1605(02)00169-1.
- 13. T. Sadananda, (2014): "In vitro Antioxidant Activity of Lectin from Different Endophytic Fungi of *Viscum album* L.," Br. J. Pharm. Res., vol. 4, no. 5, doi: 10.9734/bjpr/2014/6702.
- 14. M. M. S. Samapti et al., (2022): "Isolation and Identification of Endophytic Fungi from *Syzygium cumini* Linn and Investigation of Their Pharmacological Activities," Sci. World J., vol. doi: 10.1155/2022/9529665.
- 15. S. Wang et al., (2019): "Diversity of culture-independent bacteria and antimicrobial activity of culturable endophytic bacteria isolated from different Dendrobium stems," Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-46863-9.
- 16. X. Tan et al., (2018): "Diversity and bioactive potential of culturable fungal endophytes of *Dysosma versipellis*; A rare medicinal plant endemic to China," Sci. Rep., vol. 8, no. 1, doi: 10.1038/s41598-018-24313-2.
- 17. M. C. Manganyi and C. N. Ateba, (2020): "Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications," Microorganisms, vol. 8, no. 12. doi: 10.3390/microorganisms8121934.
- 18. E. Khare, J. Mishra, and N. K. Arora, (2018): "Multifaceted interactions between endophytes and plant: Developments and Prospects," Frontiers in Microbiology, vol. 9, no. NOV. doi: 10.3389/fmicb.2018.02732.
- 19. A. E. Fadiji and O. O. Babalola, (2020): "Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities with Multifunctional Prospects," Frontiers in Bioengineering and Biotechnology, vol. 8. doi: 10.3389/fbioe.2020.00467.
- 20. R. P. Aharwal, S. Kumar, and S. S. Sandhu, (2016): "Endophytic mycoflora as a source of biotherapeutic compounds for disease treatment," J. Appl. Pharm. Sci., vol. 6, no. 10, doi: 10.7324/JAPS.2016.601034.
- 21. G. Pavithra, S. Bindal, M. Rana, and S. Srivastava, (2020): "Role of endophytic microbes against plant pathogens: A review," Asian Journal of Plant Sciences, vol. 19, no. 1, doi: 10.3923/ajps.2020.54.62.
- 22. B. Joseph and R. Mini Priya, (2011): "Bioactive compounds from endophytes and their potential in pharmaceutical effect: A review," American Journal of Biochemistry and Molecular Biology, vol. 1, no. 3, doi: 10.3923/ajbmb. 2011.291.309.
- 23. F. Pelaez et al., (2000): "The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species: biological activity and taxonomy of the producing organisms," Syst. Appl. Microbiol., vol. 23, no. 3, doi: 10.1016/S0723-2020(00)80062-4.
- 24. J. Wen et al., (2022): "Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies," Journal of Fungi, vol. 8, no. 2, doi: 10.3390/jof8020205.
- 25. Z. Hu et al., (2020): "Metabolites with phytopathogenic fungi inhibitory activities from the mangrove endophytic fungus *Botryosphaeria ramose*," Bioorg. Chem., vol. 104, doi: 10.1016/j.bioorg.2020.104300.
- 26. N. Hashad, R. Ibrahim, M. Mady, M. S. Abdel-Aziz, and F. A. Moharram, (2021): "Review: Bioactive metabolites and host-specific toxins from endophytic Fungi, Alternaria alternate," Vietnam Journal of Chemistry, vol. 59, no. 6, doi: 10.1002/vich.202100099.
- 27. H. Li, J. M. Tian, H. Y. Tang, S. Y. Pan, A. L. Zhang, and J. M. Gao, (2015): "Chaetosemins A-E, new chromones isolated from an Ascomycete *Chaetomium seminudum* and their biological activities," RSC Adv., vol. 5, no. 37, doi: 10.1039/c5ra00525f.
- 28. A. P. G. Macabeo et al., (2020): "Tetrasubstituted α-pyrone derivatives from the endophytic fungus, Neurospora udagawae," Phytochem. Lett., vol. 35, doi: 10.1016/j.phytol.2019.11.010.
- 29. D. Liu, X. M. Li, C. S. Li, and B. G. Wang, (2013): "Nigerasterols A and B, antiproliferative sterols from the mangrove-derived endophytic fungus *Aspergillus niger* MA-132," Helv. Chim. Acta, vol. 96, no. 6, doi: 10.1002/hlca.201200332.
- 30. S. Liu, X. Liu, L. Guo, Y. Che, and L. Liu, (2013): "2H-pyran-2-one and 2H-furan-2-one derivatives from the plant endophytic fungus *Pestalotiopsis fici*," Chem. Biodivers., vol. 10, no. 11, doi: 10.1002/cbdv.201200361.
- 31. M. S. Lee et al., (2016): "Angiogenesis Inhibitors and Anti-Inflammatory Agents from Phoma sp. NTOU4195," J. Nat. Prod., vol. 79, no. 12, doi: 10.1021/acs.jnatprod.6b00407.
- 32. E. G. M. Anoumedem, B. Y. G. Mountessou, S. F. Kouam, A. Narmani, and F. Surup, (2020): "Simplicilones a and b isolated from the endophytic fungus *Simplicillium subtropicum* spc3," Antibiotics, vol. 9, no. 11, doi: 10.3390/antibiotics9110753.
- 33. F. Z. Zhang, X. M. Li, X. Li, S. Q. Yang, L. H. Meng, and B. G. Wang, (2019): "Polyketides from the mangrove-derived endophytic fungus *Cladosporium cladosporioides*," Mar. Drugs, vol. 17, no. 5, doi: 10.3390/md17050296.
- 34. A. R. B. Ola, B. D. Tawo, H. L. L. Belli, P. Proksch, D. Tommy, and E. H. Hakim,(2018): "A new antibacterial polyketide from the endophytic fungi *Aspergillus fumigatiaffinis*," Nat. Prod. Commun., vol. 13, no. 12, doi: 10.1177/1934578x1801301202.

- 35. S. Zhao et al., (2021): "Novel metabolites from the Cercis chinensis derived endophytic fungus Alternaria alternata ZHJG5 and their antibacterial activities," Pest Manag. Sci., vol. 77, no. 5, doi: 10.1002/ps.6251.
- 36. J. C. Wu et al., (2019): "(±)-Alternamgin, a Pair of Enantiomeric Polyketides, from the Endophytic Fungi Alternaria sp. MG1," Org. Lett., vol. 21, no. 5, doi: 10.1021/acs.orglett.9b00475.
- 37. J. Wei Tang et al., (2020): "Phomopsisins A–C: Three new cytochalasans from the plant endophytic fungus Phomopsis sp. sh917," Tetrahedron, vol. 76, no. 39, doi: 10.1016/j.tet.2020.131475.
- 38. C. Chen et al., (2016): "Nine new cytochalasan alkaloids from *Chaetomium globosum* TW1-1 (Ascomycota, Sordariales)," Sci. Rep., vol. 6, doi: 10.1038/srep18711.
- 39. X. Yang, P. Wu, J. Xue, H. Li, and X. Wei, (2020): "Cytochalasans from endophytic fungus Diaporthe sp. SC-J0138," Fitoterapia, vol. 145, doi: 10.1016/j.fitote.2020.104611.
- 40. Q. L. Mou et al., (2021): "New cytochalasan alkaloids and cyclobutane dimer from an endophytic fungus *Cytospora chrysosperma* in *Hippophae rhamnoides* and their antimicrobial activities," Tetrahedron Lett., vol. 87, doi: 10.1016/j.tetlet.2021.153207.
- 41. J. Yang et al., (2021): "Bioactive Indole Diketopiperazine Alkaloids from the Marine Endophytic Fungus Aspergillus sp. YJ191021," Mar. Drugs, vol. 19, no. 3, doi: 10.3390/MD19030157.
- 42. K. Xu, X. L. Wei, L. Xue, Z. F. Zhang, and P. Zhang, (2020): "Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine-Algal-Derived Endophytic Fungus *Penicillium chrysogenum* XNM-12," Mar. Drugs, vol. 18, no. 11, doi: 10.3390/MD18110578.
- 43. A. Lutfia, E. Munir, Y. Yurnaliza, and M. Basyuni, (2021): "Chemical analysis and anticancer activity of sesterterpenoid from an endophytic fungus *Hypomontagnella monticulosa* Zg15SU and its host *Zingiber griffithii* Baker," Heliyon, vol. 7, no. 2, doi: 10.1016/j.heliyon.2021.e06292.
- 44. Z. Wang, Y. Jiang, X. Xin, and F. An, (2021): "Bioactive indole alkaloids from insect derived endophytic *Aspergillus lentulus*," Fitoterapia, vol. 153, doi: 10.1016/j.fitote.2021.104973.
- 45. Y. J. Zhai et al., (2020): "Phaeosphaones: Tyrosinase Inhibitory Thiodiketopiperazines from an Endophytic *Phaeosphaeria fuckelii*," J. Nat. Prod., vol. 83, no. 5, doi: 10.1021/acs.jnatprod.0c00046.
- 46. P. Zhang, X. M. Li, J. N. Wang, and B. G. Wang, (2015): "Oxepine-containing diketopiperazine alkaloids from the algal-derived endophytic fungus *Paecilomyces variotii* EN-291," Helv. Chim. Acta, vol. 98, no. 6,doi: 10.1002/hlca.201400328.
- 47. G. Ye et al., (2021): "Isolation, structural characterization and antidiabetic activity of new diketopiperazine alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c," Mar. Drugs, vol. 19, no. 7, doi: 10.3390/ md19 070402.
- 48. L. H. Meng, P. Zhang, X. M. Li, and B. G. Wang, (2015): "Penicibrocazines A-E, five new sulfide diketopiperazines from the marine-derived endophytic fungus *Penicillium brocae*," Mar. Drugs, vol. 13, no. 1, doi: 10.3390/ md130 10276
- 49. L. H. Meng et al., (2016): "Three Diketopiperazine Alkaloids with Spirocyclic Skeletons and One Bisthio dike to piperazine Derivative from the Mangrove-Derived Endophytic Fungus *Penicillium brocae* MA-231," Org. Lett., vol. 18, no. 20, doi: 10.1021/acs.orglett.6b02620.
- 50. C. J. Zheng, L. Li, J. P. Zou, T. Han, and L. P. Qin, (2012): "Identification of a quinazoline alkaloid produced by Penicillium vinaceum, an endophytic fungus from Crocus sativus," Pharm. Biol., vol. 50, no. 2, doi: 10.3109/13880209.2011.569726.
- 51. N. Sirimangkalakitti et al., (2016): "Synthesis and absolute configuration of acanthodendrilline, a new cytotoxic bromotyrosine alkaloid from the Thai marine sponge acanthodendrilla sp.," Chem. Pharm. Bull., vol. 64, no. 3, doi: 10.1248/cpb.c15-00901.
- 52. Y. Xu et al., (2019): "New phenylpyridone derivatives from the *Penicillium sumatrense* GZWMJZ-313, a fungal endophyte of *Garcinia multiflora*," Chinese Chem. Lett., vol. 30, no. 2, doi: 10.1016/j.cclet.2018.08.015.
- 53. H. Cui, Y. Lin, M. Luo, Y. Lu, X. Huang, and Z. She, (2017): "Diaporisoindoles A-C: Three Isoprenylisoindole Alkaloid Derivatives from the Mangrove Endophytic Fungus Diaporthe sp. SYSU-HQ3," Org. Lett., vol. 19, no. 20, doi: 10.1021/acs.orglett.7b02748.
- 54. A. Wang et al., (2020): "Eremophilane-Type Sesquiterpenoids from the Endophytic Fungus *Rhizopycnis vagum* and Their Antibacterial, Cytotoxic, and Phytotoxic Activities," Front. Chem., vol. 8, doi: 10.3389/ fchem. 2020.596889.
- 55. C. X. Jiang et al., (2019): "Isolation, Identification, and Activity Evaluation of Chemical Constituents from Soil Fungus *Fusarium avenaceum* SF-1502 and Endophytic Fungus Fusarium proliferatum AF-04," J. Agric. Food Chem., vol. 67, no. 7, doi: 10.1021/acs.jafc.8b05576.
- 56. X. Hu, X. Li, L. Meng, and B. Wang, (2020): "Antioxidant bisabolane-type sesquiterpenoids from algal-derived fungus *Aspergillus sydowii* EN-434," J. Oceanol. Limnol., vol. 38, no. 5, doi: 10.1007/s00343-020-0049-y.
- 57. Q. X. Wang et al., (2013): "Ophiobolins P-T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp.," Fitoterapia, vol. 90, doi: 10.1016/j.fitote.2013.08.002.
- 58. X. S. Shi et al., (2021): "Isolation and characterization of antibacterial carotane sesquiterpenes from artemisia argyi associated endophytic *Trichoderma virens* qa-8," Antibiotics, vol. 10, no. 2, doi: 10.3390/ antibiotics 10020213.
- 59. Y. Chen et al., (2021): "Metabolites with Anti-Inflammatory Activity from the Mangrove Endophytic Fungus Diaporthe sp. QYM12," Mar. Drugs, vol. 19, no. 2, 2021, doi: 10.3390/MD19020056.
- 60. M. Fan et al., (2019): "Libertellenone M, a diterpene derived from an endophytic fungus Phomopsis sp. S12, protects against DSS-induced colitis via inhibiting both nuclear translocation of NF-κB and NLRP3 inflammasome

- activation," Int. Immunopharmacol., vol. 80, 2020, doi: 10.1016/j.intimp.2019.106144.
- 61. K. Xu et al., (2019): "Anti-inflammatory diterpenoids from an endophytic fungus Phomopsis sp. S12," Tetrahedron Lett., vol. 60, no. 38, doi: 10.1016/j.tetlet.2019.151045.
- 62. Y. M. Chen, Y. H. Yang, X. N. Li, C. Zou, and P. J. Zhao, (2015): "Diterpenoids from the endophytic fungus Botryosphaeria sp. P483 of the Chinese Herbal Medicine *Huperzia serrata*," Molecules, vol. 20, no. 9, doi: 10.3390/molecules200916924.
- 63. X. N. Wang et al., (2011): "Smardaesidins A-G, isopimarane and 20 nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss *Ceratodon purpureus* (1)," J. Nat. Prod., vol. 74, no. 10, doi: 10.1021/np2000864.
- 64. M. F. Xu, O. Y. Jia, S. J. Wang, and Q. Zhu, (2016): "A new bioactive diterpenoid from *Pestalotiopsis adusta*, an endophytic fungus from Clerodendrum canescens," Nat. Prod. Res., vol. 30, no. 23, doi: 10.1080/14786419. 2016.1138297.
- 65. H. F. Sun et al., (2012): "Asperolides A-C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus *Aspergillus wentii* EN-48," J. Nat. Prod., vol. 75, no. 2, doi: 10.1021/np2006742.
- 66. K. Guo, H. Fang, F. Gui, Y. Wang, Q. Xu, and X. Deng, (2016): "Two New Ring A-Cleaved Lanostane-Type Triterpenoids and Four Known Steroids Isolated from Endophytic Fungus *Glomerella* sp. F00244," Helv. Chim. Acta, vol. 99, no. 8, doi: 10.1002/hlca.201600039.
- 67. L. M. B. Morandini et al., (2016): "Lanostane-type triterpenes from the fungal endophyte Scleroderma UFSMSc1 (Persoon) Fries," Bioorganic Med. Chem. Lett., vol. 26, no. 4, doi: 10.1016/j.bmcl.2016.01.044.
- 68. C. Tian, H. Gao, X. P. Peng, G. Li, and H. X. Lou, (2021): "Fusidic acid derivatives from the endophytic fungus *Acremonium pilosum* F47," J. Asian Nat. Prod. Res., vol. 23, no. 12, doi: 10.1080/10286020.2020.1866559.
- 69. D. Qin et al., (2019): "Enhanced production of unusual triterpenoids from *Kadsura angustifolia* fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4.1850," Phytochemistry, vol. 158, 2019, doi: 10.1016/j.phytochem.2018.11.005.
- 70. H. Q. Liang, D. W. Zhang, S. X. Guo, and J. Yu, (2018): "Two new tetracyclic triterpenoids from the endophytic fungus *Hypoxylon* sp. 6269," J. Asian Nat. Prod. Res., vol. 20, no. 10, doi: 10.1080/10286020.2018.1485662.
- 71. S. R. M. Ibrahim, H. M. Abdallah, G. A. Mohamed, and S. A. Ross, (2016): "Integracides H-J: New tetracyclic triterpenoids from the endophytic fungus Fusarium sp.," Fitoterapia, vol. 112, doi: 10.1016/j.fitote.2016.06.002.
- 72. Z. H. Sun et al., (2015): "Guignardones P-S, new meroterpenoids from the endophytic fungus *Guignardia mangiferae* A348 derived from the medicinal plant Smilax glabra," Molecules, vol. 20, no. 12,doi: 10.3390/molecules201219890.
- 73. Q. Li et al., (2019): "Emeridones A-F, a Series of 3,5-Demethylorsellinic Acid-Based Meroterpenoids with Rearranged Skeletons from an Endophytic Fungus *Emericella* sp. TJ29," J. Org. Chem., vol. 84, no. 3, doi: 10.1021/acs.joc.8b02830.
- 74. H. G. Yang et al., (2017): "Phyllomeroterpenoids A-C, Multi-biosynthetic Pathway Derived Meroterpenoids from the TCM Endophytic Fungus *Phyllosticta* sp. and their Antimicrobial Activities," Sci. Rep., vol. 7, no. 1, doi: 10.1038/s41598-017-13407-y.
- 75. J. S. do Nascimento et al., (2020): "Natural trypanocidal product produced by endophytic fungi through co-culturing," Folia Microbiol. (Praha)., vol. 65, no. 2, doi: 10.1007/s12223-019-00727-x
- 76. Y. L. Li et al., (2022): "Two new bioactive secondary metabolites from the endophytic fungus *Talaromyces assiutensis* [TY2," Nat. Prod. Res., vol. 36, no. 14, doi: 10.1080/14786419.2021.1881961.
- 77. Y. Wen et al., (2020): "Two new compounds of *Penicillium polonicum*, an endophytic fungus from *Camptotheca acuminata* Decne," Nat. Prod. Res., vol. 34, no. 13, doi: 10.1080/14786419.2019.1569003.
- 78. R. O. Bussey et al., (2015): "Comparison of the chemistry and diversity of endophytes isolated from wild-harvested and greenhouse-cultivated yerba mansa (*Anemopsis californica*)," Phytochem. Lett., vol. 11, doi: 10.1016/j.phytol.2014.12.013.
- 79. A. Tchoukoua et al., (2017): "A phytotoxic bicyclic lactone and other compounds from endophyte *Xylaria curta*," Nat. Prod. Res., vol. 31, no. 18, doi: 10.1080/14786419.2016.1277352.
- 80. S. Chen et al., (2017): "Lasiodiplactone A, a novel lactone from the mangrove endophytic fungus *Lasiodiplodia theobromae* ZJ-HQ1," Org. Biomol. Chem., vol. 15, no. 30, doi: 10.1039/c7ob01657c.
- 81. A. S. Gusmão et al., (2021): "Computer-Guided Trypanocidal Activity of Natural Lactones Produced by Endophytic Fungus of *Euphorbia umbellata*," Chem. Biodivers., vol. 18, no. 10, doi: 10.1002/cbdv.202100493.
- 82. C. Santiago, L. Sun, M. H. G. Munro, and J. Santhanam, (2014): "Polyketide and benzopyran compounds of an endophytic fungus isolated from *Cinnamomum mollissimum*: Biological activity and structure," Asian Pac. J. Trop. Biomed., vol. 4, no. 8, doi: 10.12980/APJTB.4.2014APJTB-2014-0030.
- 83. P. M. Eze et al., (2019): "Screening of metabolites from endophytic fungi of some Nigerian medicinal plants for antimicrobial activities," Eurobiotech J., vol. 3, no. 1, doi: 10.2478/ebtj-2019-0002.
- 84. P. M. Eze et al., (2018): "Antimicrobial activity of metabolites of an endophytic fungus isolated from the leaves of *Citrus jambhiri* (Rutaceae)," Trop. J. Nat. Prod. Res., vol. 2, no. 3, doi: 10.26538/tjnpr/v2i3.9.
- 85. M. O. Akpotu et al., (2019): "Antimicrobial and GC–MS analysis of extracts from endophytic fungi isolated from the roots of *Anthocleista djalonensis* and *Uapaca heudelotii,*" Bull. Natl. Res. Cent., vol. 43, no. 1, doi: 10.1186/s42269-019-0147-3.
- 86. C. Schneider et al., (2018): "Cytotoxic secondary metabolites from the endophytic fungus *Pestalotiopsis virgatula*," Fitoterapia, vol. 131, doi: 10.1016/j.fitote.2018.10.017.

- 87. L. Gao et al., (2018): "Studies on secondary metabolites of endophytic fungus Acrocalymma sp. from *Hedychium coronarium* and their cytotoxic activities," Fitoterapia, vol. 128, doi: 10.1016/j.fitote.2018.05.021.
- 88. L. Gao et al., (2020): "Secondary metabolites from endophytic fungus Talaromyces sp. and their cytotoxic activities," Chem. Nat. Compd., vol. 56, no. 5, doi: 10.1007/s10600-020-03111-y.
- 89. Y. He et al., (2021): "Cytotoxic sesquiterpenoids from endophytic fungus Phomopsis sp. sh917," Fitoterapia, vol. 150, doi: 10.1016/j.fitote.2021.104831.
- 90. L. Yan et al., (2018): "Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions," Applied Microbiology and Biotechnology, vol. 102, no. 15. doi: 10.1007/s00253-018-9101-7.
- 91. S. S. M. Soliman et al., (2015): "An endophyte constructs fungicide-containing extracellular barriers for its host plant," Curr. Biol., vol. 25, no. 19, doi: 10.1016/j.cub.2015.08.027.
- 92. C. Zamioudis and C. M. J. Pieterse, (2012): "Modulation of host immunity by beneficial microbes," Molecular Plant-Microbe Interactions, vol. 25, no. 2. doi: 10.1094/MPMI-06-11-0179.
- 93. S. Wawra et al., (2016): "The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants," Nat. Commun., vol. 7, doi: 10.1038/ncomms13188.
- 94. P. Kusari, S. Kusari, M. Spiteller, and O. Kayser, (2015): "Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology," Applied Microbiology and Biotechnology, vol. 99, no. 13. doi: 10.1007/s00253-015-6660-8.
- 95. R. Pan, X. Bai, J. Chen, H. Zhang, and H. Wang, (2019): "Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review," Frontiers in Microbiology, vol. 10, no. FEB. doi: 10.3389/fmicb.2019.00294.
- 96. M. Rashmi and V. Venkateswara Sarma, (2019): "Secondary Metabolite Production by Endophytic Fungi: The Gene Clusters, Nature, and Expression," in Reference Series in Phytochemistry, doi: 10.1007/978-3-319-90484-9_20.

Copyright: © **2025 Author**. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.