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ABSTRACT 

Herbicides have been extensively exploited in the field of agriculture for overall agro-economic developments. Rapid 
globalization has necessitated the sharp rise in application of herbicides to meet the food demands of the escalating 
population. Extensive utilization has led to weed resistance, variation in plant tolerance and soil fertility, production of 
toxic metabolites, altered microbial community structure and biogeochemical processes. The review dealt with the 
influence of different herbicide treatment such as glyphosate, butachlor and 2, 4 D on microbial community dynamics 
reflecting their mode of action highlighting the impacts of different herbicides on plants, microbial population and its 
influence on overall soil quality. Different soil quality biomarkers have been employed to investigate the microbial 
community structure, offering valuable knowledge regarding ecological effects of herbicide application on soil health. 
The microbiological and biochemical indicators are recognized as sensitive biomarkers, thar play crucial role in soil 
quality assessment and elucidate functional status of herbicide treated agricultural soil. The shift in microbial 
community structure has been analyzed applying high-throughput sequencing and metagenomic techniques. The study 
emphasizes herbicide driven shift in microbial community structure, highlighting the relative distribution of herbicide 
metabolizing microbes that are involved in diverse degradation pathways. Overall, the review sheds light on the 
ecological implications of extensive application of herbicides on microbial community dynamics, which provide deeper 
understanding for enhancing soil quality for attaining sustainable development.   
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INTRODUCTION 
Soil is a non-renewable resource, structured, heterogeneous and discontinuous system where perpetual 
interactions among available nutrients, microbes in discrete microhabitats and vegetation patterns 
govern the biogeochemical cycles and plant productivity in terrestrial ecosystems. Soil represents the 
complex microhabitat with diverse microbial populations that differ with time and space catalyzing 
biochemical reactions, which prevail under different environmental conditions. Soil quality is correlated 
with organic matter decomposition, water retention and release, nutrient mineralization and 
immobilization, regulation of microbial mediated soil processes. Soil variables influence the microbial 
mediated processes that are intimately related with microbial colonization, which substantiate the 
concept of soil quality involving their contributions towards crop productivity. Besides, the soil quality 
biomarkers are closely related with soil physico-chemical, biochemical and microbiological indices and 
their evaluation is associated with microbial diversity. Hence, the soil quality assessment involves the 
selection of sensitive indicators followed by linking these soil variables in time scale, which provides 
meaningful insights into vital soil processes and ecosystem functioning. Expanding global population has 
necessitated the agricultural intensification resulting sharp rise in usage of herbicides to fulfill food 
security and demands. Intention of herbicides treatment is to control weeds and unwanted vegetation 
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below acceptable threshold limit based on minimal negative environmental impacts without causing any 
significant damage to crops. However, the indiscriminate application of herbicides has negative effects on 
microbial communities depending on dosage, frequency of treatment and soil properties, which influence 
microbial community structure. Some herbicides are found to be vulnerable to volatilization, leaching and 
runoff, which accumulate in soil and water bodies inducing adverse impacts on unintended microbe. 
Herbicides applied onto foliage indirectly enter surface water through runoff or leachate leading to 
biological impairments. Extensive usage of herbicides promotes development of herbicides resistant 
plants either by natural selection or intentional resistance developed in GMO crops. Herbicides applied 
with ultimate objective to maximize yield and economy that act potentially at the expense of ecosystem 
functions. Moreover, the overutilization of herbicides leads to the gradual deposition in soil, promote 
biomagnification in plants and subsequently enter food chain leading to health issues. However, the effect 
of chemically unique and structurally distinct herbicide on the microbial community structure is different 
due to their differential degree of resilience to adapt the altered environmental conditions along with 
their ability for herbicide degradation without losing the ability to support agronomic goals. Further, two 
primary processes that govern the fate of herbicide application to the soil: (i) the transfer process 
including runoff, percolation, sorption and desorption, flora and fauna uptake; (ii) the degradation 
process including photodecomposition, chemical breakdown, microbial decomposition and plant-
mediated detoxification. Keeping in view, the ecotoxicological studies based on the impacts of different 
herbicides and its persistence in soil influencing microbial community dynamics is pivotal for the 
implementation of effective management strategies. The study represents a holistic approach using 
combination of quantitative biomarkers that established connecting links between fluxes driving nutrient 
pool, which can be used for periodic assessment soil quality. Besides, the assessment of microbial 
community dynamics holds potential as complementary criteria for ecological assessment. The 
assessment of microbial mediated processes is prerequisite for the implementation of effective 
management strategies. Assuming microbial community dynamics and ecological restoration are linked, 
the soil quality and functional status can be evaluated through periodic assessment of microbial 
community dynamics and functional biomarkers. Considering the outcome based conceptual frameworks 
of microbial community dynamics-ecosystem functioning using the complex statistical and mathematical 
predictive models, there is strong recognition of metabolic capabilities exhibited by microbial community 
structure, their utilization regardless of the magnitude on soil quality assessment as well as these 
differential patterns of responses reflected by soil variables. Soil seems to be characterized by 
redundancy of functions and therefore there is need for selection of suitable biomarkers with relatively 
higher discriminating potentials. 
Herbicides induced impacts on microbial community dynamics  
Exposure of microbial community to herbicides induces microbial community dynamics with the 
mechanisms for tolerance. The adverse effects of herbicides vary depending on dosage, frequency and soil 
properties that in turn influence microbial community structure and enzyme mediated activities. 
Herbicides have been applied in different growth stages for effective weed control such as glyphosate 
(pre-planting phase) that inhibits amino acid biosynthesis; butachlor (pre-emergence phase): selective 
systemic herbicide imposing neurotoxic effect through cholinergic impairment; 2, 4-D (post-emergence 
phase) is involved in growth regulation. Indiscriminate use of herbicides leads to gradual soil 
accumulation that causes biomagnification in plants and subsequently enters the food chain leading to 
different health implications. Despite of recognition of microbial community structure in ecosystem 
sustainability, there is little understanding of the fundamental processes that drive, maintain and alter 
microbial community structure influencing soil processes. Moreover, the soil variables show differential 
pattern of responses to same impact reflecting multidimensional soil quality, which makes it difficult to 
infer functional status of soil sub-system influencing ecosystem functioning. Though various soil quality 
indicators are selected based on their potency and sensitivity to interpret the differential patterns of 
responses with efficiency and reliability are rooted to have complex relationships between different soil 
variables. Besides, the emerging paradigm ‘microbial community dynamics-ecosystem function’ 
supplements the soil quality assessment primarily as the functional diversity underlining active influence 
of microbial communities. Although several soil quality indices are applied to determine the variation in 
microbial community structure but the ecological significance of microbial community dynamics has not 
yet been investigated. Keeping in view, the ecotoxicological studies based on the impacts of herbicides 
and its persistence in agro-ecological interface influencing the microbial community dynamics is pre-
requisite to elucidate the soil quality and functionality in terrestrial ecosystems useful for the 
implementation of effective soil management strategies.  
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Classification of herbicides 
Herbicide classification is crucial for comprehending the mechanism of herbicide resistance along with 
implementation of sustainable agriculture strategies that work [1,2] This is due to the fact that certain 
herbicide-resistant weeds can still be susceptible to few particular herbicides if the dosage and  frequency 
of application are suitable. Conversely, the overuse of herbicides can either damage the crop or confer 
resistance that is intended for control, which substantiate the optimal use of herbicides for maximal 
effect. Herbicides have been classified based on (a) mode of action, (b) selectivity, (c) time of application, 
(d) chemical structure, (e) site of action, (f) residual action, (g) spectrum of control and (h) formulations 
(Figure 1).    
 

 
Figure 1. Schematic presentation of herbicides classified on the basis of their (a) mode of action, 
(b) selectivity, (c) time of application, (d) chemical structure, (e) site of action, (f) residual action, 
(g) spectrum of control and (h) formulations.  
 
Herbicides are classified into contact herbicides and systemic/translocated herbicides based on their 
mechanism of action. Contact herbicides (paraquat, sulphuric acid, sodium arsenite, ammate) are mostly 
involved in killing or inhibiting plant growth through direct contact, whereas the systemic herbicides 
(dalapon, acid arsenical, sodium chloride, glyphosate) are absorbed by plant parts and exert adverse 
effects on plant growth and metabolism by moving to untreated areas through xylem and phloem of weed 
depending on the nature of herbicides. Besides, several studies have substantiated different mechamism 
of action of herbicides through (i) amino acid synthesis inhibitors (glyphosate), (ii) lipid biosynthesis 
inhibitors (clodinafop), (iii) photosynthetic inhibitors (atrazine, sencor, hyvar, karmex, buctril), (iv) cell 
membrane disrupters (paraquat), (v) seedling growth inhibitors (butachlor), (vi) plant growth regulators 
(glufosinate, 2,4-D) and (vii) pigment inhibitors (balance, callisto). Besides, selectivity is the capacity of 
herbicide to kill target plant without damaging non-target plant species. Few selective herbicides 
(atrazine, butachlor, 2,4-D, pendimethalin) are highly specific that disrupt the metabolic machinery or 
biosynthetic pathways of few specific weeds while mostly sparing intended crop. The non-selective 
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herbicides (paraquat, glyphosate) are formulated to control weeds and toxic to all vegetation. However, 
the selectivity of herbicide depends on the soil topography, soil fertility, environmental conditions, timing 
and rate of application [2,3,4,5]. Herbicides are classified into three major categories based upon the time 
of application: pre-plant, pre-emergence and post-emergence (Figure 1). The pre-planting herbicides 
(paraquat, basalin, trifluralin, fluchloralin, EPTC) are applied before cropping, which are incorporated 
into soil to reduce volatility and photo decomposition. The pre-emergence herbicides (simazine, atrazine, 
alachlor, butachlor, metribuzine) are most effective, which are applied to soil before emergence of crop 
and weeds. Post-emergence herbicides (paraquat, glyphosate, sulfosulfuron, 2,4-D) are sprayed following 
the emergence of crop and weeds or herbicides applied after crop emergence but before weeds grow. 
Moreover, herbicides are classified by their chemical composition such as inorganic and organic 
herbicides. Inorganic herbicides (simezine, isoxaben, arsenic acid, sulphuric acid, borax, copper sulfate, 
copper nitrate) contain no carbon actions in their molecules and used initially for weed control before the 
introduction of organic herbicides. Organic herbicides include polycyclic oils, acrolein, butachlor, alachlor, 
chloramben, paraquat, carabamates, triazines, urea, uracils, 2,4-D, fluchlorine, bromoxylin etc. The plants 
exhibit differential patterns of interactions with herbicides, which solely based on their absorption, 
translocation, metabolism and mechanism of action (Table 1). Accordingly, herbicides are either applied 
to soil during plowing (soil active herbicides) or directly to foliage (foliar applied herbicides). Soil active 
herbicides (alachlor, butachlor, trifluralin, ETPC) applied to soil are sufficiently active to kill weeds 
through vertical or horizontal translocation movement, which mostly include pre-emergence herbicides. 
On the other hand, foliar applied herbicides (paraquat, glyphosate, isoproturon, 2,4-D, sulfosulfuron, 
metribuzin) are applied to plant foliage that kill upon contact and does not require translocation, which 
mostly includes post-emergence herbicides. Some herbicides exhibit both function (soil active and foliar 
applied) such as atrazine and metribuzin. Additionally, the herbicides are classified on the basis of their 
residual action in soil either residual herbicides or non-residual herbicides. Residual herbicides 
(triazines, phenyl ureas) are resistant to degradation and remain in soil in active form for longer period 
allowing longer lasting influence on weed control. In contrast, the non-residual or zero persistence 
herbicides (diquat, glyphosate, paraquat) are easily degraded or subjected to microbial mediated 
metabolism after application and therefore do not have long lasting effects on weed control. Herbicides 
that control particular group of weeds rather than all the weed of particular group are referred to as 
narrow spectrum herbicides (2,4-D, mettsulfuron-methyl). The 2,4-D specifically kills broad leaf weeds 
and sedges rather than grasses. In contrast, the broad-spectrum herbicides (alschlor, butachor, 
imezathyper, atrazine, pendimethalin) control weeds including grasses, broad leaf weeds and sedges. 
Herbicides are applied with different formulations that influence their efficacy towards weeds control. 
The wettable powder herbicides (2,4-D, diuron, linuron) exhibit low water solubility and hence grounded 
into fine powder is used as water suspension. Liquid water-soluble herbicide formulations (2,4-D, 
dicamba, diquat, paraquat) are used in the form of soluble liquids. Emulsifiable herbicides (nitrofin, 
diallate, alachlor) are active ingredients dissolved in solvent followed by emulsification, which helps in 
uniform distribution of toxic chemicals without stirring mostly useful for spraying. Liquid suspension 
herbicides (atrazine, cyprazine, nitralin) involve the solubilization of active ingredients in organic 
solvents that are not soluble in water for spraying in form of liquid suspension. Soluble powder 
herbicides (endothal, dalapan, 2,4-D) include water soluble powders that form homogenous solution in 
water for spraying. Granules herbicides (butachlor, 2,4-D) are granules with inert clays, the solution of 
toxicant is sprayed on these granules in desired quantity and dried.    
                

Table 1. Mode of action of herbicides along with representatives under different categories [6]. 
Mode of action Target site and effects Herbicides 

ACCase inhibitors 

Few herbicide classes (phenylpyrazolin 
aryloxyfenoxypropionates and cyclohexanediones) that 
inhibit the acetyl coenzyme A carboxylase (ACCase), 
which cause disruption of lipid synthesis. 

Clethodim, cyhalofop, 
diclofop, fluazifop, 

pinoxaden, sethoxydim 

ALS inhibitors 
Herbicide classes (imidazolinones and sulfonylureas) 
inhibit acetolactate synthase (ALS) enzyme that disturb 
biosynthesis of branched-chain amino acids. 

Bensulfuron, halosulfuron, 
imazamox, imazethapyr, 

metsulfuron 

Amino acid synthesis 
inhibitors  

Herbicides classes such as imidazolinone, sulfonylurea, 
sulfonylamino, carbonyltrozolinone that inhibit the 
biosynthesis of amino acids.  

Glufosinate, glyphosate, 
chlorosulfuron, 

imazethpyr, flumetsulam 
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Carotenoid synthesis 
inhibitors 

Herbicides that block enzymes involved in synthesis of 
carotenoids and chlorophyll. Carotenoids shield plants 
from oxidative energy, whereas lack of carotenoids cause 
disruption in protein and membrane. 

Amitrole, clomazone, 
fluridone, mesotrione, 

norflurazon, topramezone 

Cell membrane 
disrupters  

Herbicides classes including diphenylether, imine,    N-
phenylphthalimide, pyrimidinedione, triazolinone and 
bipyridylium that not only disrupt cell membrane, but 
also inhibit the synthesis of cell membrane to certain 
extent. 

Bifenox, lactofen, 
chlornitrofen, fomesafen, 
flumioxazin, butafenacil, 
thidiazimin, azafenidin, 

sulfentrazone 

Cellulose inhibitors 
Herbicides represent heterogeneous groups affecting the 
assembly and deposition of cellulose, as well as inhibit the 
cell wall (cellulose) synthesis. 

Dichlobenil, indaziflam, 
isoxaben, quinclorac, 

flupoxam 

Fatty acid and lipid 
synthesis inhibitors 

Few chemical classes such as the thiocarbamates, inhibit 
reactions vital in fatty acid/lipid biosynthesis disturbing 
the synthesis of biomembrane, proteins, hormones and 
other cellular components. 

Bensulide, butylate, EPTC, 
molinate, triallate, 

vernolate 

Glutamine 
synthetase inhibitors 

Phosphonic acid herbicides inhibit enzyme glutamine 
synthetase, which lead to increase of ammonia in plants 
and inhibits PSI and PSII. 

Glufosinate 

Mitosis inhibitors 
Chemical families affect various processes involved in cell 
division, which mostly include chloroacetemides, 
dinitroaniline and pyridine herbicides. 

Alachlor, dimethenamid, 
metolachlor, oryzalin, 

pendimethalin, pronamide 

Photosystem I (PSI) 
inhibitors  

PSI inhibitors disturb electrons during photosynthesis, 
generate free radicals that disrupt cell membranes and 
lead to cell and tissue desiccation. 

Paraquat, diquat 

Photosystem II 
(PSII)  inhibitors  

Herbicide classes such as triazines, uracils, amides that 
disturb photosynthesis by blocking the electron transport 
in PSII. Protein and lipid oxidation generates free radicals 
that causes plant death. 

Atrazine, bromacil, diuron, 
hexazinone, linuron, 
propanil, simazine, 

tebuthiuron 

Plant growth    
regulators  

Herbicides classes phenoxyacetic acid, benzoic acid and 
pyridines mostly disrupt the hormone balance and 
protein synthesis thereby inhibit plant growth, but also 
induce various plant growth abnormalities  

2,4-D, dicamba, clopiralid, 
picloram, triclopyr,  

Seedling growth 
inhibitors  

Herbicides classes dinitroaniline, chloroacetamide and 
isoxazoline, thiocarbamate, benzofuran inhibit growth of 
seedlings of annual and perennial weeds. 

Butachlor, trifluralin, 
alachlor, EPTC, benefin 

Synthetic auxins 

Phenoxycarboxylic acids, benzoic acids, pyrachlor and 
pyridine carboxylic acids mimic endogenous auxins. At 
higher concentration, the growth regulator herbicides 
lead to the uncontrolled cell division stimulate ethylene 
production and growth. 

2,4-D, 
aminocyclopyrachlor, 

aminopyralid, clopyralid, 
dicamba, MCPA, 

quinclorac, triclopyr, 
The strategic usage of herbicides targeting specific weed need to be controlled, which solely depend on 
the time and frequency of application, dosage regimes, mode of action, route of application, rate of 
absorption and retention of herbicides based on the formulations [7,8,9]. Herbicides having higher 
absorption and retention capacity need less volume and potency in comparison to other herbicides. 
Efficacy of herbicides depends upon efficient contact (soil or foliage), degree of absorption, translocation 
and degree of toxicity [6,10,11] keeping pace with time of application and mode of action.  
 
Advantages of herbicides treatment  
 Application of herbicides as pre-plant and pre-emergence treatment prevents extensive weeds before 

they emerge from soil thereby minimizing competition during seedling stage.  
 Herbicides usage is effective for crop improvement compared to mechanical methods.  
 Selective herbicides not only target specific weed control without damaging crops, but also withhold 

weeds for longer period after application.  
 Unlike mechanical methods, the translocated herbicides are used to control deep rooted or 

vegetatively propagated weeds. However, the combinational approach (chemical and mechanical) is 
more efficient in controlling weeds.  

Limitations of herbicides treatment  
 Excessive use of herbicides makes differentiation between success or failure of weed control 

substantiating environmental pollution. 
 Herbicide family that belongs to specific group have similar mechanism of action even though 
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belonging to different chemical families. 
 Long residual effects mediated by certain herbicides limit the choice of crop selectivity.  
 Acquisition of herbicides resistance by weeds through natural selection or gene transfer leads to the 

long-term devastating economic consequences.  
 Genetic drifts mediated by herbicides influence the productivity of neighboring crops  
 Cross-resistance is another alarming issue in agriculture as few weeds may acquire resistance to 

different herbicides with similar mode of action. 
 Rationale of using the herbicide-resistance management strategy compared to passive approach 

should be quantified based on cost-effectiveness and crop productivity.   
Glyphosate (C3H8NO5P)  
Glyphosate [N-(phosphonomethyl)glycine) is broad-spectrum,  non-selective systemic herbicide, which  is 
effective in killing wide varieties of plants, annual broadleaf weeds, grasses and woody plants that 
compete with existing crops [12]. Glyphosate is aminophosphonic glycine analogue exists in different 
ionic states based on medium pH. Glyphosate is nonvolatile and does not undergo photochemical 
degradation. Glyphosate application is relatively safe due to rapid inactivation through adsorption and 
microbial mediated degradation [13,14,15]. The phosphonic acid and carboxylic acid moieties undergo 
ionization whereas the amine group is protonated therefore exists as chain of zwitterions. Being acid 
molecule, glyphosate are developed with isopropylamine, diammonium, monoammonium or potassium 
as counterion. Glyphosate is formulated using various surfactants/adjuvants such as polyoxyethylene 
amine to improve the uptake followed by translocation of active ingredient by plants [16,17]. Glyphosate 
is primarily used before planting of agricultural crops applicable in horticulture, viticulture, silviculture 
and garden maintenance specifically used for the eradication of invasive species, habitat restoration and 
enhancement of native plant establishment [18,19].    
Mechanism of action of glyphosate 
Glyphosate is absorbed primarily by foliage of plants whereas minimal through roots, which suggested 
that glyphosate is effective on actively growing plants and unable to prevent seeds from germination.  
Glyphosate is rapidly translocated to the regions of active growth within plant (systemic activity), which 
is necessary for its effectiveness [20,21]. Glyphosate inhibits 5-enol-pyruvyl-shikimate-3-phosphate 
synthase [22,23] that catalyzes conversion of shikimate- 3-phosphate and phosphoenolpyruvate to 
synthesize 5-enolpyruvyl-shikimate-3-phosphate (Figure 1.2). Hence, the biosynthesis of aromatic amino 
acids (such as tyrosine, phenylalanine, tryptophan) synthesized through shikimate pathway is inhibited 
[24, 25, 26] that leads to accumulation of shikimate under plant tissues diverting energy and other 
resources from metabolic processes lead to plant death. The plants treated with glyphosate and its 
derivatives usually die within (1-3) weeks period because of its even distribution in plant. 
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Figure 2. Glyphosate inhibits 5-endopyruvylshikimate 3-phosphate synthase (EPSPS) in shikimic 

acid pathway inhibiting the biosynthesis of aromatic amino acids (tyrosine, tryptophan, 
phenylalanine) [27, 28]. 

 
Effects of glyphosate on plants and microorganisms 
The sublethal dose of glyphosate soil residues induce underappreciated consequences, which show direct 
impacts on target species and also cascading effects on non-target organisms influencing different 
physiological processes including plant defense mechanism with their potential indirect effects on biotic 
interactions. Glyphosate and its byproduct aminomethyl phosphonic acid inhibit antioxidant enzyme 
activities that promote the deposition of ROS influencing physiological dysfunctions and cellular damage 
[29]. Glyphosate is reported to increase chlorophyll degradation whereas AMPA alters chlorophyll 
biosynthesis resulting in necrosis of plant foliage and plant death [17, 29]. Sub-lethal dose of glyphosate 
modulates plant defense-related metabolic pathways including (i) the role of phytohormone 
concentration in regulating biosynthetic pathways; (ii) regulating synthesis of different compounds; (iii) 
alternations in species-specific plant defense mechanisms; (iv) influencing the plant-associated microbes 
involved in defense mechanism; (v) plant-microbial community dynamics; and (vi) emission of volatile 
compounds mediating impacts on plant defense responses. Synthesis of phenylpropanoids involved in 
plant defense responses, its interactions with abiotic and biotic factors is influenced by chorismate, which 
is inhibited by glyphosate [30, 31]. Majority of the plant derived secondary metabolites synthesized 
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through phenylpropanoid pathway reveal decline production following exposure with glyphosate doses 
[32]. Synthesis of salicylic acid that mediates plant defense responses to pathogens, insects is influenced 
by chorismate synthesized through shikimate pathway [33, 34]. Besides, glyphosate represses FAD2 
mediated enzymatic conversion of oleic acid to linolenic acid through lipoxygenase pathway, which 
decline the linolenic acid responsible for enzyme metabolization of polyunsaturated fatty acids (Jasmonic 
acid, oxylipins) essential for defense mechanism [35]. Glyphosate decline the synthesis of phenolic-based 
volatile compounds (indole, phenethyl acetate) that are essential signalling components involved in 
indirect plant defense responses [36]. Indole derived from tryptophan plays significant role in volatile 
emission and indirect plant defense responses decline with sublethal exposure of glyphosate [31]. 
Sublethal glyphosate dose decline plant growth is correlated with lower level of IAA leading to their faster 
breakdown [37, 38]. Sublethal glyphosate dose induces higher synthesis of phytohormones (ethylene, 
abscisic acid) that are directly linked to plant induced defense mechanism and correlated well with 
increased susceptibility to plant attackers [39]. Adverse impacts of glyphosate-based herbicide led to 
alternations in soil and aquatic microbial communities influencing their activities through biogeochemical 
cycling and nutrient turnover [40, 41, 42]. Glyphosate is considered as an antimicrobial agent [43] that 
targets EPSPS enzyme inhibiting shikimate pathway [44, 45]. Some microbes use glyphosate as the major 
carbon, nitrogen and phosphorous source for their development [46, 47]. Besides, glyphosate undergoes 
degradation through two metabolic processes mediated by the glyphosate degrading bacteria such as (a) 
glyphosate oxidoreductase degrades carboxymethylene N-bond of glyphosate to form AMPA and 
glyoxylate; (b) the C-P lyases including phosphoenolpyruvate hydrolase, phosphonoacetate hydrolase, 
phosphonoacetaldehyde hydrolase cleave C-P bond of AMPA leads to the synthesis of inorganic 
phosphate and sarcosine [47, 48, 49]. 
Butachlor (C17H26CINO2) 
Butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl) acetamide] is chloroacetanilide class of 
herbicide, which is used as pre-emergence, selective and systemic herbicide [50, 51]. Besides, it is a non-
ionic herbicide mainly used for the pre-emergent control of annual grasses and broadleaf weeds 
particularly in paddy fields both seeded and transplanted [52]. Butachlor is absorbed majorly by 
germinating shoot and by root, translocated throughout the plant with relatively greater accumulation in 
vegetative parts with half-life period (1.65- 2.48) days in field water and about (2.67 – 5.33) days in soil 
[53]. Because of short half-life period and biodegradability of butachlor substantiates its usage in rice 
cultivation [54, 55]. Butachlor is degraded by photochemically formed hydroxyl radicals and removed at 
particulate-phase by wet deposition. Butachlor has no mobility with minimal volatilization in moist soils 
and hence it is absorbed to soil sediment [56, 57].  
Mechanism of action of butachlor 
Butachlor has gained worldwide recognitions as highly selective and effective acetamide herbicide with 
efficient weed management strategies. Mode of action mediated by butachlor includes its influence on 
lipid metabolism, seed germination, gibberelic acid biosynthesis, cell division, cell permeability, amino 
acids incorporation during protein synthesis, mineral uptake due to alternation in selective absorption 
[58, 59, 60]. Butachlor alters cell division and cellular metabolism in due to the inhibition in elongase 
enzyme responsible for long chain fatty acids biosynthesis [61, 62, 63]. Chloroacetanilide herbicides 
including butachlor also inhibit the gibberellins biosynthesis [64], secondary metabolites [63] as well as 
enzymes involved in geranylgeranyl pyrophosphate cyclization [50, 65]. The negative impact of butachlor 
including, growth, chlorophyll fluorescence and photosynthesis of aquatic plants with toxic impacts 
increasing with concentration have been reported by several workers [63, 66, 67]. 
Effects of butachlor on plants and microorganisms 
Butachlor has gained recognition as selective acetamide herbicide specifically used for rice cultivation 
targeting weeds with minimal adverse effects [63]. Efficacy of butachlor in controlling weeds varies with 
plant species, exposure concentration, phonological period, frequency and duration of treatment [50, 52]. 
Exposure of butachlor not only targets weeds but also plants upon exposure with significant phytotoxicity 
causing death of non-target plants. Plant species exhibited differential patterns of responses to butachlor 
i.e. some species are susceptible inhibiting the plant growth whereas the detrimental impacts on some 
species even at lower concentration. The dose dependent response of butachlor exhibits concomitant link 
with inhibition of somatic cell division in plant [52, 68]. Butachlor absorb by plants exert herbicidal 
effects belowground and induce toxicity upon root tip spindle formation [69] and reduction in shoot 
length [70] led to its pervasive effect on different plant species. Besides, the variations in total chlorophyll 
under varying butachlor concentration indicated the dose dependent decline in photosynthetic efficiency 
of aquatic plant species [63].  Butachlor enhance antioxidant effect by enabling them to prevent oxidative 
stress within the plant cells [71]. The morbidity caused by butachlor is mutagenic and genotoxic, their 
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mode of action is unspecific to non-target microbes influencing microbial community dynamics [72]. 
Being the persistent pollutant in agricultural soil, butachlor influence microbial community structure and 
enzyme activities [73]. Butachlor negatively impacts the growth and metabolism of beneficial microbes in 
agricultural soils [74]. Microbial mediated transformation is considered as the efficient route for 
butachlor degradation in soil [75, 76, 77]. Bacillus altitudinis use butachlor as the sole carbon source and 
involved in butachlor degradation [78]. Besides, the Sphingobium sp. and Mycobacterium sp. isolated from 
paddy soil were reported to be involved in butachlor degradation [79]. Several microorganisms have the 
ability to degrade butachlor [80] including different microorganisms such as Paracoccus sp. [81], 
Catellibacterium caeni sp. [82], Rhodococcus sp. [83], Sphingomonas chloroacetimidivorans sp. [84]. The 
process of microbial mediated butachlor degradation mostly occurs by hydrolysis via two pathways (a) 
deacylation and (b) dealkylation (Figure 3). Butachlor was initially deacylated leading to the loss of acetyl 
group to form N-(butoxymethyl)-N-(2-chloroethyl)-2,6-diethylaniline. Enzymatic formation of N-
(butoxymethyl)-2,6-diethyl-N-propylaniline and N-(butoxymethyl)-2-ethylaniline due to hydrolysis of 
chlorine atoms and dealkylation of nitrogenous alkyl chains. Dechlorination form (2,6-diethylphenyl) 
(ethoxymethyl) carbamic acid before diacylation [80]. Secondly, the dealkylation leads to the formation of 
most common degradation products such as 2-chloro-N-(2,6-diethylphenyl) acetamide and 
butoxymethanol, then subsequently hydrolyzed followed by dealkylation of butachlor catalyzed by 
different enzymes so as to form catechol and muconic acid, which were eventually converted into H2O and 
CO2 [80]. 
 

 
Figure 3. Microbial mediated pathway involved in butachlor degradation through (a) deacylation 

and (b) dealkylation [80]. 
2,4-Dichlorophenoxyacetic acid (C8H6Cl2O3)  
The (2,4-dichlorophenoxy) acetic acid (2,4-D) is a post-emergence systemic widely applied herbicide due 
to selectivity, broad spectrum efficacy in controlling the broadleaf weeds and unwanted vegetation by 
causing the uncontrolled growth but not applicable for grasses [85, 86, 87, 88]. Basically, 2,4-D is used to 
inhibit the spread of invasive and non-native annual or perennial weeds thereby minimizing the crowding 
of native species. Widespread occurrence of the esters and amines of 2,4-D in aqueous ecosystem is due 
to the presence carboxyl group in soil subsystem [89].  
Besides, the commercial formulations of 2,4-D are water soluble that makes herbicide more effective due 
to its rapid penetration through leaves and roots of plant species [90, 91]. However, efficacy of phenoxy 
herbicide (2,4-D) is influenced not only by the dynamic interplay between physical, chemical and 
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biological processes, but also based on their chemical formulations, soil properties, microbial community 
structure, soil dissipation, bioleaching and its availability to plant species [92, 93, 94].   
Mechanism of action of 2,4-D 
The 2,4-D is an auxin analogue that suppress growth of weeds based on uncontrolled and lethal growth of 
target plants [95, 96]. Mode of action of 2,4-D is mediated through activation of auxin receptor system 
inducing variation in actin cytoskeleton and by up-regulation of auxin responses [ 97] and produce higher 
concentration of reactive oxygen species, which mediates cell wall dismantling and leaky membrane 
leading to cell necrosis [98, 99]. The 2,4-D induce expression of auxin genes leading to abscisic acid and 
ethylene biosynthesis and (Figure 4), which inhibit cell division and plant growth, stimulate the leaf 
senescence leading to plant death [100, 101, 102]. At low concentration, the 2,4-D mimics auxin to 
promote cell division and elongation whereas controls the broadleaf growth at relatively higher 
concentration [95]. Different formulations of 2,4-D show diverse effects such as the dimethylamine salts 
(2,4-D DMA) are polar non-volatile compounds that are absorbed through roots whereas the butylester 
salts (2,4-D BE) being volatile are absorbed by leaves [96, 102].  
 

 
Figure 4. Mode of action of 2,4-dichlorophenoxyacetic acid mediated by up-regulation of ACC 
synthase, biosynthesis of abscisic acid and ethylene production, which prevent cell division, 

promote leaf senescence and oxidative damage due to higher level of ROS leading to cell death 
[96]. 

 
Effects of 2,4-D on plants and microorganisms 
The 2,4-D is a moderate persistent herbicide having half-life (20 - 30) days with low adsorption 
coefficients and high-water solubility [103, 104]. Several factors including plant age, species and soil 
quality influence the development and maturity of cuticle influencing the herbicide uptake and 
translocation. The differential pattern of responses induced by 2,4-D showed significant decline in 
photosynthetic rate, stomatal conductance and transpiration in plants compared to plants without the 
herbicide exposure [105]. Besides, the reduction in stomatal conductance stimulates ethylene production 
and abscisic synthesis, which accumulates in leaves and subsequently translocated in plants leading to 
the stomatal closure thereby limiting the CO2 assimilation and reducing plant yield [106]. Besides, 2,4-
D imposes higher risk of drift and causes higher phytotoxicity even with lower dose in non-target crops 
affecting photosynthesis and plant growth [107]. Plant mediated degradation of 2,4-D herbicide takes 
place majorly by the direct conjugation, ring hydroxylation followed by side-chain cleavage to smaller 
extent [108]. The degradation of 2,4-D in an attenuation process influenced by closer interactions of 
microbial community structure with abiotic and biological processes [109, 110]. Efficacy of 2,4-D 
biodegradation varies with the relative distribution of microbial community structure, their nature of 
interactions and catabolic activities (Table 2).   
   

 
 
 
 



 
 
       

ABR Vol 16 [4] July 2025                                                                    332 | P a g e                             © 2025 Author 

Table 2. Microbial degradation of 2,4-dichloropehnoxyacetic acid with their degradative 
potentials [87, 96]. 

Bacterial strains Isolation habitat Degradative potential References 
Delftia acidovorans Polluted river in Buenos Aires, 

Argentina 
200 g L−1 of 2,4-D        

within 24 hrs 
111 

Burkholderia, Dyella, 
Mycobacterium,  

Agricultural lands in Guanajuato, 
México 

27.7 mg L−1 in 150 days 112 

Achromobacter sp. QXH Mixture of soil and activated 
sludge 

144 mg L−1 in 18 days 113 

Burkholderia cepacia, 
Pseudomonas sp. DS-2,  

S. paucimobilis DS-3 

2,4-D contaminated soil, Poland 34.72 mg L−1, 36.76 mg 
L−1, 

27 mg L−1 in 10 days 
respectively 

114 

Cupriavidus campinensis BJ71 Wheat fields, Beijing, China 200 mg L−1 2,4-D in 3 days 115 
Cupriavidus necator N-1 Agricultural soil,  Buenos Aires, 

Argentina 
250 mg L−1 in 3 days 116 

Pseudomonas sp., 
Stenotrophomonas sp. 

Wheat fields in Beijing, China 185 mg L−1 of 2,4-D during 
7 days  

115 

Achromobacter anxifer LZ35 2,4-D-contaminated soil  
in Suzhou, China 

200 mg L−1 2,4-D within  
 2 days 

117 

Corynebacterium humireducens 
MFC-5 

Wastewater contaminated with 
2,4-D 

9 μmol L−1 of 2,4-D in 
     5 days 

118 

Novosphingobium sp. DY4 Paddy field site in Jiangsu 
province, China 

200 mg L−1 2,4-D within     
5 days 

119, 120 

Rhodococcus ruber Wastewater treatment plant, 
Ciudad Real, Spain 

0.071 mg L−1 2,4-D 
       per day 

    121 

Bradyrhizobium elkanii USDA94 Soybean root-nodulating 20 mg L−1 2,4-D within  
  10 day 

122 

Burkholderia cepacia 2, 4-D-contaminated soil, Suzhou, 
China 

60 mg L−1 2,4-D within 
     3 days 

123 

Cupriavidus gilardii 2, 4-D-contaminated soil, 
Shandong, China 

10 mg L−1 2,4-D per day 124 

Achromobacter anxifer LZ35 2, 4-D-contaminated soil, Suzhou, 
China 

50 mg L−1 2,4-D within  
12 day 

117 

Cupriavidus sp. CY1 Pristine forest soil, 
Muroran, Japan 

500 mg L−1 2,4-D within  
3 day 

119 
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B

 
Figure 5. Biochemical pathways involved in degradation of 2,4-D herbicide mediated   by (a) 

Cupriavidus necator JMP 134 (b) Azotobacter chroococcum [87]. 
 
The 2,4-D degrading bacteria are categorized into: (a) Group-I includes γ- and β-proteobacteria for 
predominance of α-ketoglutarate (α-KG) dioxygenase (TfdA) gene catalyzing the initial process in 2,4-D 
degradation [125, 126, 127], which is sub-divided into three sub-groups (class I–III) based on the tfdA 
sequences similarities; (b) Group II includes α-proteobacteria have tfdAα gene; (c) Group III includes 
microbes that are phylogenetically similar to the genus Sphingomonas harbouring the tfdAα/cadAB gene 
[115, 128]. Microbial degradation involves the degradation of 2,4-D by breakdown of ether bond to 
synthesize 2,4-dichlorophenol or 4-chloro-2-methylphenol by α-ketoglutarate dependent 2,4-D 
dioxygenase encoded by tfdA gene (Figure 5). Next step includes hydroxylation of phenol compounds to 
form catechol catalyzed by 2,4-DCP hydroxylase encoded by tfdB gene. Catechol is catalyzed by 3,5-
dichloro–catechol dioxygenase encoded by tfdC to form 2,4-dichloro-cis, cis-muconate, which is catalyzed 
by dichloromuconate cycloisomerase encoded by tfdD into cis 2-dichlorodienelactone. Dienelactone 
hydrolase encoded by tfdE gene catalyzes conversion of chlorodienelactone to chloromaleylacetate 
involved in 2,4-D degradation by Cupriavidus necator JMP134 [129]. The maleylacetate reductase 
encoded by tfdF yields 3-oxoadipate that enters intermediary metabolism (Figure 5a). Alternative 
pathways of 2,4-D degradation (Figure 5b) involving Azotobacter chroococcum leading to dehalogenation 
and formation of 4-chlorophenol instead of 3,5-chlorocatechol through the pJP4 pathway [130]. 
Soil quality biomarkers  
Soil represents the structured, heterogeneous and discontinuous complex microhabitat that governs 
ecosystem functioning based on (a) the shift in physico-chemical, microbiological properties, (b) 
differential patterns of metabolism and herbicides biodegradation, (c) efficiency of biotransformation, 
and (iv) microbial community structure [131, 132, 133, 134]. Being difficulties in inferring ecosystem 
functioning directly due to differential pattern of responses revealed by soil variables to same impact,  
sensitive biomarkers should be selected to determine the variation in herbicides treated soil over time 
with equal efficiency and reliability. The concept of pedodiversity has emerged as the functional 
determinants of ecosystem functioning. The criteria for quality assessment of herbicides treated soil 
focuses on microbial community dynamics including their interactions with plant-soil system [135, 136, 
137] as the patterns observed aboveground is regulated by microbial community structure associated soil 
processes. Ecological assessment of herbicides treated soil reflect holistic approach involving periodic 
assessment using reliable soil quality indicators [138, 139]. Such recognition emphasizes the need of 
sensitive soil quality biomarkers elucidating their intimate relationships with soil physico-chemical and 
microbiological indices and hence the periodic assessment is necessary to explore their contribution in 
time scale influencing the dynamic changes in microbial community structure [140]. Besides, the 
quantitative assessment involves the selection sensitive soil quality biomarkers reflecting the sign of 
improvement in soil genesis, microbial mediated herbicide degradation through periodic monitoring of 
the changes in soil nutrients and microbial activities [141, 142]. Effective monitoring requires the 
sensitive biomarkers sufficiently simple, robust for periodic assessment that provide information about 
the state of soil [143]. Further, the use of sensitive ecological biomarkers is pre-requisite to explore the 
site-specific ecology mediated by the adverse impacts of herbicides using sensitive ecological biomarkers 
at ecological interface for agro-ecosystem sustainability.  
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Soil organic matter 
The soil quality assessment of herbicide treated soil from the ecological standpoints encompass physico-
chemical characterization including organic C, total N and extractable P as the sensitive indicators 
reflecting dynamic changes in microbial community structure [144, 145, 146]. SOM promotes aggregate 
stability and increase hydrological regimes, which acts as the source of nutrients and energy to support 
vegetation. Soil represents largest organic carbon sink influencing carbon mobilization on the basis of size 
and breakdown of soil organic matter that promotes nutrient flow through mineralization [147, 148]. 
Besides, nitrogen is an important soil nutrient mostly derived from organic matter, which prevents 
growth of vegetation and shift in microbial community structure [149, 150]. Implications towards 
improving soil quality, the extractable phosphorous is essential to plants as macronutrient, is extracted in 
organic and inorganic forms through mineralization [150, 151]. Soil carbon C, total N and extractable P 
are major soil quality indicators that limit soil functioning [152, 153] and shift in microbial community 
structure [154, 155].  
Microbial biomass pool 
Microbial biomass is defined as the viable component that comprises of living organisms, small standing 
stock of nutrients reflecting quantity and quality of SOM [145]. Microbial biomass pool is involved in 
biotransformation, nutrient turnover and structural stability in herbicides treated soil, which led 
microbial ecologists to use it as sensitive indicators for soil quality assessment and keystone biological 
driver for ecosystem functions [156, 157]. Pool size of microbial biomass in herbicides treated soil is the 
functional index of accessing the soil quality [158, 159], biological marker of soil health [160] and labile 
pool of the plant available nutrients, which determines microbial community structure involved in 
nutrient conserving mechanisms through immobilization and mineralization [160, 161]. Higher microbial 
biomass pool size supplements the greater functional diversity among microbial communities in 
herbicides treated soil [145, 162] and hence considered as the valuable designator useful for soil quality 
assessment in terrestrial ecosystems. Microbial biomass carbon is referred as viable components of 
organic carbon through decomposition of organic matter and control nutrient dynamics influencing 
primary productivity in soil [145, 163, 164]. MB-C is considered as the sensitive index of changes in 
organic C and hence responds quickly to environmental changes compared to soil organic matter because 
of its high turnover rate [165, 166, 167]. Microbial biomass nitrogen acts as reservoir of significant part of 
the potentially mineralizable nitrogen and serves both as transformation matrix and source-sink of 
nitrogen in herbicides treated soil [168,169]. Hence, the importance of quantifying nitrogen dynamics 
based on the MB-N assessment reflects nitrogen availability and overall nitrogen cycling in herbicides 
treated soil [170, 171]. Rapid turnover of microbial biomass P accounts for 2-10% of total phosphorous, 
which represents the structural stability influenced by microbial mediated phosphorus cycling and 
availability for plant uptake in herbicides treated soil [168; 169, 172). Immobilization of inorganic P 
mediated by soil microbes prevent the available P from physico-chemical fixation [173, 174]. 
Microbial basal soil respiration 
Basal soil respiration is defined as consistent rate of soil microbial respiration originate through organic 
matter mineralization and considered as sensitive indicator of biological activity [165, 175], which is 
estimated based on (a) autotrophic respiration involving CO2 release from plants, and (b) heterotrophic 
respiration mediated CO2 release due to microbial mediated organic matter decomposition [176, 177]. 
BSR is influenced by the dynamic interplay between plant root-microbe-soil interactions, available soil 
nutrients, microbial community structure, microbial biomass and activity [178, 179, 180]. Moreover, the 
microbial respiration per unit of microbial biomass carbon is defined as ‘microbial metabolic quotient’ 
(qCO2), which reflects the eco-physiological status of soil quality [181], as well as microbial activity in 
herbicides treated soil [157, 182, 183, 184, 185]. 
Enzyme activities 
The catalytic efficacy of microbial enzymes involved not only in decomposition of SOM, nutrient cycling 
and nutrient turnover but also degradation of xenobiotic compounds [186], which quickly respond to 
anthropogenic activities and hence used as sensitive biomarkers for soil quality assessment [187, 188]. 
Biochemical reactions are responsive to changes in microbial mediated soil processes influenced by the 
microbial community structure in herbicides treated soil [189, 190, 191] and hence the microbial 
community dynamics is likely to be reflected based on the functional integrity of soil [192, 193]. Enzyme 
catalyzed reaction either intracellular or extracellular reflect nutrient availability in herbicides treated 
soil due to their rapid response based on soil quality [153, 194, 195]. Nevertheless, the co-existence of 
differential vegetation patterns with the complexity of microbial community dynamics lead to the 
increasing heterogeneity in enzyme mediated catalysis in herbicides treated soil [196, 197]. Amylases are 
involved by hydrolyzing glycogen, starch and polysaccharides to produce oligosaccharides that are 
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involved in microbial mediated cellular metabolism [198, 199]. Invertase enzyme hydrolyzes sucrose into 
glucose and fructose useful for soil quality assessment [145, 200]. Proteases degrade proteins and release 
NH4-N vital for maintenance of N-mediated soil processes including mineralization that regulates plant 
available N promoting plant growth [196, 201, 202]. Ureases are extracellular enzymes involved in 
hydrolysis urea to form NH3 regulating nitrogen cycle [155, 194, 203]. Dehydrogenases is used as 
sensitive biomarker reflecting overall estimate of microbial activity and oxidative index in soil [204, 205]. 
Being intracellular, dehydrogenase activity provides potential indications governing cellular and 
biochemical processes essential not only for the assessment of soil quality, but also exhibits closer 
relationships with microbial community dynamics in different herbicides treated soil profiles [195, 205, 
206].  
Microbial community structure 
Being sensitive to environmental and human activities, the contribution microbial community structure 
in metabolic processes including SOM decomposition, nitrogen fixation, nutrient turnover, 
biogeochemical cycling and plant growth gain considerable recognition as the sensitive biomarker for soil 
quality assessment. Soil microbiome varies according to the physiological and nutritional status of 
herbicides treated soil that directly or indirectly respond to changes in soil system determining functional 
integrity through changes in taxonomic richness and microbial community dynamics prerequisite in 
governing ecosystem functioning. Besides, the chronosequence assessment of herbicides treated soil over 
multiple time scale provides an opportunity to explore microbial community dynamics useful for 
monitoring soil quality. 
Strategies used to explore microbial community structure  
Due to difficulties in microbial culturing, the culture-independent technique is applied to determine 
microbial community dynamics using phospholipid fatty acid profiling that reveal not only viable 
microbial biomass but also physiological soil status [207, 208, 209].  PLFAs confined to microbial 
membrane are used to unravel microbial community composition reflecting as ‘microbial community 
fingerprint’ [210, 211, 212]. PLFA profiling discriminate microbial communities by providing set of 
molecular markers specific for different microbial taxa, which is used as biomarkers to elucidate 
microbial community dynamics in soil profiles from diverse origin and land management practices [213, 
214]. Besides, the adaptive variations in microbial community structure in various soil profiles were 
analyzed by community level physiological profiling (CLPP) applying ‘BIOLOG system’ [214, 215, 216]. 
Being metabolically heterogeneous with varying metabolic pathways and microbial soil processes, it is 
imperative to elucidate metabolic profiling of different herbicides treated soil on different days after 
treatment to analyze functional diversity among microbial communities through community level 
physiological profiling [217, 218, 219]. Moreover, the shift in average well colour development based on 
metabolic catabolism of substrate utilization reflects overall changes in microbial community structure 
that can be correlated with soil quality assessment [214, 220].  
High throughput screening of microbial community structure  
The high throughput sequencing provides platform to elucidate microbial community composition and 
diversity owing to multiplexing and the meta-data analysis at higher scale [221, 222, 223, 224]. High-
throughput sequencing has revolutionized microbial ecology studies due to accurate identification of taxa 
without culture-dependent approaches [225]. Metagenomic approach provides complete picture of 
microbial diversity, taxonomic structure and interactions between microbes to reveal their relationships 
with ecological factors and functional diversity among microbes [226, 227, 228, 229]. High-throughput 
sequencing is potent technique used to explore the taxonomic profiling, which provides unbiased insights 
and facilitates the comprehensive metagenomic studies on microbial community dynamics [230, 231, 
232, 233]. High-throughput sequencing based impact assessment of glyphosate treated soil was explored 
by 16 rRNA gene profiles of soil microbiomes [234, 235, 236, 237]. Impacts of butachlor induced shift in 
microbial communities were analyzed using 16S rDNA sequencing [238]. Microbial community dynamics 
associated with 2,4-D treated soil using the high throughput 16S rRNA amplicon sequencing was 
substantiated by several workers [239, 240, 241]. 
Microbial community dynamics in herbicides treated soil 
Microbial community dynamics reflects the ecologically significant endpoint used to evaluate the soil 
quality in relation to the herbicide treatment, which is reflected through the microbial communities at 
multiple spatial scales influenced by environmental heterogeneity. The shift in microbial community 
composition occurs even when the size of the microbial community as a whole remains constant that 
indicates their role as sensitive biomarker of soil quality compared to either their overall microbial 
community size or metabolic processes. Difference in microbial community structure is correlated with 
soil organic matter and long-lasting land use practices that influence in shaping microbial community 
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structure. The functional outcomes of microbial mediated interactions, triggered by the short-term or 
long-term herbicides applications through competitive and cooperative mechanisms, play significant role 
in supporting the ecosystem functioning [241, 242]. The shift in microbial community structure upon the 
long-term glyphosate exposure followed by stimulation of microbial respiration was suggested by several 
workers [163, 237, 243, 244]. Glyphosate mediated stimulation in microbial activity and functional 
diversity of cultivable heterotrophs involved in glyphosate biodegradation was reported [245, 246, 247]. 
The distribution of glyphosate and its byproduct aminomethyl phosphonic acid not only induce oxidative 
stress influencing microbial community dynamics, but also alter nutrient cycling [248, 249, 250, 251]. The 
sorption and desorption dynamics of glyphosate with soil matrix and physico-chemical properties 
determine its bioavailability thereby influencing microbial community structure [252, 253]. Repeated use 
of butachlor followed by its soil persistence inducing functional diversity, microbial metabolic activities, 
enzyme activities and microbial respiration because of the shift in microbial community structure [254, 
255, 256], which poses potential impacts to agro-ecology and health issues through food chain [257, 258]. 
Being pre-emergence herbicide, butachlor influences nitrogen fixing abilities of soil microbes altering 
microbial community structure [259]. Higher exposure of butachlor alters soil enzyme activities, 
microbial respiration [260, 261, 262], which were proved to be powerful ecotoxicological tool for soil 
quality assessment. The dose dependent response with elevated level of butachlor towards the shift in 
microbial metabolic quotients and microbial community structure has been suggested [262]. The dose-
dependent response of 2,4-D influencing microbial community dynamics was substantiated by several 
workers [96, 263, 264, 265]. The frequent use of 2,4-D triggers the degradation pathways with existing 
microbes leading to structural and functional shifts in overall microbial community structure in soil [266, 
267, 268]. Exploration of the multidimensional applications of 2,4-D as prominent herbicide, it is crucial 
to explore microbial mediated degradation and subsequent elimination of 2,4-D through complex 
processes involving metabolism, conjugation and efflux pump transport mechanism lead to variation in 
microbial community structure [269, 270, 271].   
 
CONCLUSION 
The heterogeneity in soil variables within landscape in different days after herbicide application influence 
microbial community dynamics across the sites. Such variations may be attributed by gradual shift in 
microbial community composition, which highlights the approach prerequisite for investigating soil 
quality status at agroecological interface over time. Microbial community structure responds to herbicide 
persistence associated with toxicity, which induced decline in available soil nutrients and soil functional 
changes through the alternations in microbial biomass pool, basal soil respiration and enzyme activities. 
Due to inherent difficulties in soil quality assessment, the real-time ecological assessment necessitated 
the selection of the potential soil quality biomarkers to determine adverse impacts of different herbicides 
influencing soil functional status over time. The review emphasized the integrative measure of microbial 
community dynamics influenced by indiscriminate use of herbicides. Being sensitive to the persistence of 
herbicides mediated toxicity, the exploration of microbial community dynamics through catabolic 
profiling on the basis of available nutrients and enzyme activities is essential, which is considered as 
effective approach to elucidate functional diversity influencing soil quality. 
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