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ABSTRACT 
Antimicrobial resistance (AMR) is a significant worldwide health concern caused due to improper and excessive use of 
antibiotics, resulting in the development of microbes resistant to drugs. The origin of AMR can be traced back form 
discovery of penicillin, as the emergence of multidrug-resistant organisms has presented substantial obstacles to 
healthcare systems globally. The improper utilization of antibiotics in human and animal healthcare has lead to the 
dissemination of resistance genes, resulting in the emergence of a "Silent Pandemic" that has the potential to surpass and 
causes mortality. The unrestricted use of antimicrobials in animal feed has significantly contributed to the formation and 
spread of antimicrobial resistance. Antimicrobial resistance in humans and animals, as it presents difficulties in the 
treatment of diseases caused by resistant microorganisms. Artificial intelligence (AI), which encompasses machine 
learning (ML) and deep learning (DL), has shown great potential in various areas of medical research, particularly in 
combating antimicrobial resistance. AI applications in antimicrobial resistance (AMR) utilize advanced computational 
techniques to analyze gene expression and whole-genome sequencing data. This helps in identifying the root causes of 
infectious diseases and classifying different types of diseases. AI-driven systems offer numerous advantages compared to 
conventional ones, such as reduced reliance on human intervention, enhanced precision and decreased expenses. Thus, 
the current review have to used on evaluating antimicrobial resistance utilizing artificial intelligence (AI) on different 
datasets and compare the efficacy of different AI models.  
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INTRODUCTION 
Antibiotics are highly efficient weapons in the battle against bacteria and are widely regarded as the most 
significant medical breakthrough of the 20th century. The advent of antibiotics transformed the 
therapeutic approach and continues to rescue many lives from bacterial infections. According to the 
Centres for Disease Control and Prevention (CDC), it is estimated that in 2018, antimicrobial resistance 
(AMR) resulted in 35,900 deaths in the United States [1]. This number is expected to increase as the 
population becomes older. Based on statistical data, 700,000 individuals die annually worldwide [2-4]. 
Antibiotics have proven incredibly beneficial to humanity, serving not only therapeutic objectives but also 
being utilised in other ways such as animal husbandry and production as preventive measures in 
undeveloped and developing countries for many years [5]. Microorganisms have evolved antimicrobial 
resistance due to their growing utilization and improper handling. Antimicrobial resistance is the ability 
of microorganisms, such as bacteria, viruses, fungi, and parasites, to survive and multiply in the presence 
of treatments intended to eliminate them. Infections generated by antimicrobial-resistant organisms pose 
significant challenges in treatment and are associated with a heightened risk of severe disease and 

AAddvvaanncceess    
iinn      

BBiioorreesseeaarrcchh  

http://www.soeagra.com/abr.html
mailto:manoj.singh@mmumullana.org


 
 
       

ABR Vol 16 [4] July 2025                                                                    376 | P a g e                             © 2025 Author 

mortality. Various categories of antimicrobial agents, such as antibiotics, antifungals, antivirals, 
disinfectants, and food preservatives, function by either inhibiting the development and reproduction of 
microorganisms or causing death. Antibiotics are a type of antimicrobial drugs that are specifically 
designed to fight against bacterial infections and the growing problem of antibiotic resistance. AMR, or 
antimicrobial resistance, is a natural process observed in all species. It occurs when genetic mutations 
occur to protect against the harmful effects of strong selection pressure. Bacteria endeavor to acquire 
resistance against antibacterial treatments in order to withstand environmental selection pressure, hence 
rendering these drugs ineffective [6]. The evolution and spread of antimicrobial resistance is influenced 
by a multitude of interconnected factors pertaining to healthcare and agriculture. Furthermore, AMR, 
which stands for antimicrobial resistance, can be influenced by other factors such as medications, 
improper waste management, trade, and finance. These aspects contribute to the complexity of AMR, 
making it a significant global public health issue [7]. According to the World Health Organization (WHO), 
AMR is among the top 10 threats to global health. AMR poses a hazard to the environment, food. The 
mortality rate caused by antimicrobial resistance is a significant global danger. The present mortality rate 
in AMR stands at 1.27 million in 2023 [8]. The World Health Organization predicts that the number of 
fatalities caused by AMR will reach 10 million by the year 2050. Figure 1 display the mortality rates 
attributed to AMR, cancer, and various other disorders, including traffic accidents. Developing novel 
techniques to detect strains that are vulnerable to immune system or particular antibiotics are essential 
in combating the rise of antibiotic-resistant diseases. The proliferation of artificial intelligence (AI) has 
profoundly transformed research methodologies in various fields, particularly biomedical research, in the 
twenty-first century [9].  
 

 
Figure 1: Deaths due to AMR compared to other common deaths in 2023. 

 
The subfields of machine learning (ML) and deep learning (DL) within the science of AI have emerged as 
viable methods for addressing these intricate phenomena. Machine Learning primarily concentrates on 
developing algorithms that can construct predictive models using training data sets [10]. In the last 
decade, there has been a surge in the inclination towards utilizing machine learning (ML) and deep 
learning (DL) techniques to enhance the quality of healthcare. This phenomenon can be ascribed to the 
escalating accessibility of biological and medical data, in computing notable progress in algorithm 
development. Identifying and tracking the genes associated with antimicrobial resistance is a complex 
task due to its intricate nature [11]. The emergence of an antibiotic-resistant gene is influenced by both 
biological and environmental variables. The primary goal of this effort is to utilize artificial intelligence in 
different phases of investigation for antimicrobial resistance. Data availability and the accessibility of 
standard tools are currently constrained [12]. This work extensively investigates the new approaches of 
Artificial Intelligence; specifically machine learning and deep learning, to identify the crucial solution for 
antimicrobial resistance analysis. For this study, we specifically examined a limited number of research 
articles from our library that utilised machine learning or deep learning as the model to analyze 
antimicrobial resistance in infectious diseases.  
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BIOCHEMICAL APPROACHES IN REDUCING RESISTANCE AND INCREASING SUSCEPTIBILITY TO 
AVAILABLE ANTIBIOTICS 
Lately, scientists have shifted their research efforts towards exploring alternative methods to eradicate 
antibiotic-resistant bacteria, without solely relying on the development of new antibiotics. This strategy is 
intriguing due to the financial and logistical difficulties associated with the exploration and creation of 
novel antibiotics. The primary concept behind this technique is to counteract the inherent defense 
mechanisms of microbes, enhancing the efficacy and lethality of existing antibiotics [13]. This is intriguing 
because we aim to enhance the effectiveness of existing antibiotics with proven safety records, making 
them more powerful. This would result in greater availability of highly effective antibiotics for treating 
infectious diseases, potentially at a lower cost. A thorough comprehension of the mode of action of 
antibiotics and the mechanisms of resistance in bacteria is essential in order to create successful 
alternative medicines. Each bactericidal antibiotic class possesses a distinct mode of action that 
specifically targets a separate component of the bacterial cell, ultimately resulting in the demise of the 
pathogen [5, 14, 15]. It is widely believed that different kinds of antibiotics function by affecting bacteria 
in distinct ways, such as causing a loss of membrane permeability, changing cell shape, or inhibiting 
critical metabolic pathways. However, the precise effects of microbial molecular networks resulting from 
antibiotic exposure and their direct role in causing bacterial cell death are not yet fully understood. The 
process of bacterial killing by antibiotics is an intricate one, initiated by the direct interaction between the 
medication and its specific target in the bacteria. This interaction triggers a series of biochemical, 
molecular, and ultra structural alterations in the affected bacterium [16]. The continuous evolution and 
dissemination of drug-resistant bacteria highlights the need for a deeper comprehension of the intricate 
mechanisms via which existing antibiotics eradicate bacteria, in order to discover novel antibacterial 
treatments. Calhoun et al. [17] and Hong et al. [18] have documented that all antibiotic medicines have a 
shared secondary impact once they have successfully reached to their main targets. The report states that 
they compel the targeted bacterium to generate "reactive oxygen species (ROS)," commonly referred to as 
free radicals. These free radicals have the potential to cause significant harm to the bacterium's DNA and 
proteins if not promptly neutralized. Regardless of their modes of action, all bactericidal antibiotics have 
a common secondary impact on the bacterial cell, leading to the death of the organism. This concept was 
supported by previous research conducted by Kohanski et al. [19], which showed that bactericidal 
antibiotics targeting specific cellular components caused the production of reactive oxygen species in 
both Gram-negative and Gram-positive bacteria. Nevertheless, bacteriostatic antibiotics did not induce 
the generation of hydroxyl radicals [20]. Subsequent investigations have revealed that hydroxyl radicals 
are generated through a Fenton-like reaction, wherein ferrous iron is oxidized to ferric iron by peroxide, 
leading to the production of hydroxyl radicals. The main process by which peroxide causes the death of 
bacteria is by the creation of double-strand DNA breaks [21]. These breaks are a product of the Fenton 
reaction, which can also be triggered by antibiotics. Additionally, there is a small amount of evidence 
suggesting that when bacteria are exposed to antibiotics, a DNA repair pathway called the SOS response is 
activated. This pathway responds to oxidative stress and DNA damage. It has been observed that bacterial 
species that cannot form iron-sulfur clusters, which are a source of iron, are less vulnerable to drugs that 
kill bacteria [22]. Administration of large doses of bactericidal antibiotics leads to the generation of 
harmful hydroxyl radicals via a shared physiological mechanism that involves changes in the central 
tricarboxylic acid (TCA) cycle and iron metabolisms [23, 24]. Additionally, following exposure to 
antibiotics that kill bacteria, there was a noticeable decrease in the levels of nicotinamide adenine 
dinucleotide (NAD) + hydrogen (H) (NADH), which resulted in the production of ferrous iron. Conversely, 
a decrease in the TCA cycle impairs the amount of NADH, which reduces the vulnerability of bacteria to 
bactericidal medicines [25]. The augmentation in the generation of hydroxyl radicals causes harm to DNA 
and proteins. This phenomenon was consistently recognized as a prevalent adverse effect of all 
antibiotics included in the study, as well as a recurring factor in bacterial mortality. In order to 
successfully address the growing problem of antibiotic resistance, it is crucial that we utilize our 
advanced knowledge of antibiotic mechanisms in the development of new clinical treatments and 
methods. Two primary targets for the development of alternative antibiotic therapy will be examined: the 
SOS response and the function of hydrogen sulphide in generalized antibiotic resistance in bacteria. 
 
SOS RESPONSE: A KEY STEP IN THE DEVELOPMENT OF ANTIBIOTIC RESISTANCE  
The Save our souls response is a DNA repair mechanism that is activated in response to DNA damage and 
oxidative stress [26, 27]. The SOS pathway plays a crucial role in bacterial adaptation, pathogenicity, and 
diversification. It is also significant in the formation of persister cells, prolonged tolerance, and stress 
resistance, including antibiotic resistance as shown in figure 2. Kohanski et al. 2017 [19] conducted a 
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study which found that antibiotic exposure caused the SOS response, leading to reduced susceptibility to 
bactericidal drugs in bacterial mutants that cannot form iron-sulfur clusters. Moreover, this study 
reinforces prior findings that antibiotics, such as ciprofloxacin, can induce the SOS response, which may 
play a crucial role in the emergence of drug resistance [5, 28]. Proteins responsible for repairing DNA 
damage, such as RecA (an activator), LexA (a suppressor), and chaperones, are synthesized as 
components of the SOS response [29]. The process of repairing damaged DNA usually requires the ability 
to tolerate small genetic alterations, which might lead to the emergence of antibiotic resistance and 
persistence. Antibiotics can elevate the levels of reactive oxygen species (ROS) inside the cell, leading to 
damage in DNA, proteins, and lipids, and triggering the SOS response. Oxidative stress occurs when there 
is an excess of ROS being produced in the cell compared to the amount that is eliminated [30]. The 
generation of hydroxyl radicals may be linked to bacterial death and antibiotic resistance, based on 
extensive understanding. The RecA protein is commonly recognized as the primary initiator of the SOS 
response through its interaction with single-stranded DNA [31]. The growing data connecting the action 
of antibiotics with the cellular response to damage caused by hydroxyl radicals can now be utilised to 
create novel antibacterial drugs. Compounds that inhibit the SOS response have the ability to both hinder 
the emergence of antibiotic resistance, especially when the medicine is administered in low doses, and 
improve the effectiveness of antibiotics that kill bacteria [32]. Currently, there are ongoing efforts to 
produce RecA inhibitors for clinical uses. Initially, the SOS response was identified as a key regulator of 
DNA damage repair. However, its role has been observed to extend beyond expectations. Similar to a 
biologist's perspective, the SOS response induces an increased mutation rate, leading to genetic variation 
and microbial adjustment, which encompasses the development of antibiotic persistence and resistance 
[31, 33, 34].  
 

 
Figure 2: Bacterial SOS response: a schematic view. 

 
This approach has the potential to be utilised for other essential proteins that play a role in the response 
to hydroxyl radicals. They may have been overlooked in previous attempts to discover new antibiotic 
targets because they are not crucial for cell growth. AMR poses a significant risk to both human health 
and food production as it allows for the transmission of resistant zoonotic pathogens from animals to 
humans [35]. Excessive use of antibiotics in livestock for medical treatment and to enhance livestock 
growth has resulted in the emergence of resistance. This increases the chances of MDR bacteria such as 
Salmonella and Campylobacter being transmitted through the food chain or by animal handlers. Bacterial 
strains that are resistant can easily spread between different species. Wildlife also acquires AMR through 
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indirect environmental exposures, which leads to increased transmission of pathogens. Microbes that are 
resistant to antibiotics can spread beyond their original habitat and infiltrate the surrounding 
environment. This occurs when fertilizers, which are derived from animal waste, are used. As a result, 
water sources and the food we consume can become contaminated with these resistant microbes. They 
also share AMR genes with regular environmental and human commensal micro-flora. With limited 
treatment options available for animal infections caused by resistance, the escalation of outbreaks among 
cattle, poultry, and sheep becomes a serious concern. This often leads to the difficult decision of animals, 
resulting in substantial economic losses and posing a threat to food supplies. Estimates suggest that AMR 
could result in a significant financial burden of $3-4 billion in the livestock industry in the coming decades 
[36]. The negative effects of resistance have far-reaching consequences for agriculture, economic systems, 
national security, and trade. Therefore, it is crucial to adopt a comprehensive One Health approach that 
includes monitoring and interventions for human, animal, and environmental health. This is essential in 
order to effectively tackle the significant current and future negative effects of antimicrobial resistance on 
animals, which in turn increases the risks of human exposure even more [37–40].  
 
ROLE OF ARTIFICIAL INTELLIGENCE IN DETECTING OF ANTIMICROBIAL RESISTANCE  
Antimicrobial resistance is typically studied by employing antimicrobial susceptibility testing (AST), a 
method that depends on phenotypic testing [41]. Phenotypes refer to specific characteristics of 
microorganisms that pertain to their physical properties, such as their shape, size, and coloration. 
However, carrying out this type of testing necessitates a substantial amount of time [42]. As an 
illustration, the testing procedure for certain bacterial pathogens takes 2 days, whereas it can take several 
weeks for microbial species that grow slowly [43, 44]. Genome sequences provide further data that can be 
analyzed to investigate antimicrobial resistance. Thanks to technological developments and reduced 
costs, the process of obtaining genomic sequences has become more readily available [45]. Furthermore, 
later studies have employed environmental data, such as temperature, humidity, and other variables, to 
predict the probability of antimicrobial resistance [46]. Multiple methodologies employ genetic data to 
forecast the occurrence of antimicrobial resistance. Deep learning and machine learning models are 
sophisticated instruments capable of precisely forecasting and interpreting antimicrobial resistance. 
These models build a connection between the input features and the goal labels by means of non-linear 
correlations [47]. The objective is to do regression or classification, and in specific cases, analyze and 
understand the outcomes [48]. These models have exhibited a notable level of precision in forecasting 
antimicrobial susceptibility when an adequate amount of data is accessible. The following sections offer a 
thorough overview of the overall techniques used in Machine Learning and Deep Learning for predicting 
antibiotic resistance. 
 
MECHANISM OF MACHINE LEARNING AND DEEP LEARNING AS MODEL FOR THE DETECTION OF 
ANTIMICROBIAL RESISTANCE 
Supervised learning issues often encompass prediction and classification tasks. During these tasks, 
models undergo training utilizing given input data in order to make an estimation of a specific target, 
sometimes referred to as a "label". The first phase entails collecting and organizing the data. The dataset 
primarily consists of whole-genome sequences (WGS) and single-nucleotide polymorphisms (SNPs) along 
with their corresponding phenotypes [49]. A particular investigation, cited as, employed whole-genome 
sequencing (WGS) to analyze different strains of E. coli bacteria collected from both animal and human 
clinical samples. This data was acquired using proprietary means and is also accessible online as a 
publicly accessible dataset. The study aimed to examine the impacts of antibiotics, including CIP 
(ciprofloxacin), CTX (cefotaxime), CTZ (ceftazidime), and GEN (gentamicin). The dataset consists of 
isolates that exhibit resistance and susceptibility. Sequences can be segmented into k-mers, which are 
subsequences of length k, in order to construct features [50]. This method is beneficial when dealing with 
incomplete genome strains, and using short k-mers can offer vital information about the precise regions 
that are responsible for resistance [51–53]. Afterward, the procedure of pre-processing and feature 
extraction becomes essential. This In addition, the machine-learning models can be trained using label 
encoding and one-shot encoding techniques [54]. K-mers are labeled according to their phenotypes and 
perform the encoding procedure. Various Python libraries can be used to easily implement data pre-
processing, encoding, and feature extraction. Diverse machine learning and statistical technologies can 
also be utilized to create meaningful characteristics. A convolutional neural network has been utilized to 
employ machine-learning techniques in order to build effective features for predicting AMRs. Previous 
research have utilized various machine-learning models, including logistic regression (LR), support 
vector machine (SVM), random forest (RF) for the prediction and classification of AMRs, in addition to 
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data management [31, 55-57]. Similarly, the researchers in utilized a deep-learning model consisting of 
artificial neurons organized in layers to replicate the operations of the human brain [58]. The scikit-learn 
Python library is employed for constructing LR, RF, and SVMs, whereas Tensor Flow and Python are 
utilized for implementing CNN and other deep-learning architectures. The core principle of all these 
models is to construct a mathematical relationship between input qualities and target labels using the 
available data. Therefore, the meticulous selection and organization of relevant data is highly important. 
By iteratively training the models with the provided training data, they acquire the ability to establish a 
mapping and understand a concealed non-linear connection [59]. Once the models have completed their 
training, they are subjected to testing using new and unseen data, commonly known as test data, in order 
to assess their performance before being applied in actual scenarios. Multiple evaluation metrics, 
including as root mean square error (RMSE), mean absolute error (MSE), accuracy, precision, recall, and 
confusion matrix, can be used to analyze the models [51, 60, 61]. After reaching the necessary level of 
precision, it can then be used to real-world applications.  
 
PREDICTION OF ANTIMICROBIAL RESISTANCE THROUGH ARTIFICIAL INTELLIGENCE 
Antibiotics are little compounds that possess the ability to impede or exterminate microorganisms, and 
are frequently employed in medical settings to combat bacterial diseases [62]. Regrettably, the misuse of 
antibiotics leads to antimicrobial resistance (AMR). Given that AMR substantially diminishes the 
effectiveness of antibiotics as a treatment, it is crucial for us to monitor its development and 
dissemination. Presently, there are two commonly employed approaches for diagnosing antimicrobial 
resistance (AMR) [63]. There are two methods used for antibiotic susceptibility testing (AST). The first 
method is called antimicrobial susceptibility testing (AST) [43], and the second method is called whole-
genome sequencing for antimicrobial susceptibility testing (WGSAST) [64]. Antibiotic susceptibility 
testing (AST) is a traditional approach for measuring levels of antibiotic resistance [65, 66]. However, it is 
not efficient and does not provide an explanation for the mechanism of antimicrobial resistance [67]. 
Whole-genome sequencing and antimicrobial susceptibility testing (WGS-AST) offers a fast, reliable, and 
precise method for diagnosing antimicrobial resistance (AMR). However, it necessitates the use of 
extensive and complex datasets in order to properly extract information. Artificial intelligence 
technologies are utilized to enhance existing methodologies [68–70] in the following manner. In order to 
enhance AST approaches, Inglis et al. employed a hybrid approach that involved utilizing flow cytometer 
antimicrobial susceptibility testing (FAST) [71] in conjunction with supervised machine learning [72] to 
conduct antimicrobial susceptibility testing. This particular artificial intelligence technique produces a 
dependable outcome in less than 3 hours [73]. In addition, Lechowicz et al. [74] achieved a significant 
reduction in the duration of AST, from 24 hours to just 30 minutes, by creating a method that integrates 
infrared (IR) spectroscopy [80] with artificial neural network using an IR-spectrometer. According to 
Figure 4, AI-based IR-spectrometry and the FAST approach are significantly quicker than traditional AST 
methods. Current research using WGS-AST primarily rely on k-mer analysis, which involves analyzing 
specific sequences of nucleotides derived from the entire genome of samples. Nevertheless, k-mer 
datasets are excessively voluminous and repetitive to be directly employed for AI applications. In order to 
determine the presence of a specific k-mer in the genome, Davis et al. [75] utilized rapid annotation using 
subsystem technology (RAST) [37, 76] to transform the k-mer into a binary matrix. In addition, Mahé et 
al. employed the stability selection method to create a concise and predictive subset of k-mers from a vast 
number of redundant and correlated ones [77], as opposed to using a binary matrix. This strategy 
enhances the efficiency and interpretability of the predictive model. Figure 3 demonstrates that a binary 
matrix or a limited subset of k-mer, in combination with AST results, can be utilized to construct a 
classifier model capable of predicting antimicrobial resistance and exploring the connections between 
genotype and phenotype [78].  
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Figure 3: A comparison between classic AST methods and AI-based AST methods. 

 
The effectiveness of these procedures relies heavily on the thoroughness and excellence of the databases, 
which often contain precise information on antibiotic resistance genes (ARGs) and antimicrobial 
susceptibility testing (AST) results. For instance, Davis et al. have gathered bacterial genomes containing 
antimicrobial resistance (AMR) information, encompassing genomics, transcriptomics, and protein-
protein interactions [79, 80]. While AI technology is increasingly utilized for AMR forecasts, there 
remains significant potential for further enhancement. Regarding AST, while the AI-powered FAST or IR 
spectrometer approach can enhance the pace of antimicrobial susceptibility testing, their procedures are 
excessively intricate for non-experts to utilize. Hence, our future research will focus on incorporating AI 
algorithms into the analytic software of FAST or IR spectrometers to achieve automated analysis.  
 
DEVELOPMENT OF AI BASED ANTIMICROBIAL PEPTIDES MODELS 
Through advancements in microbiology, biochemistry, and organic chemistry, scientists have identified 
around 100 different forms of antibiotics that effectively combat infectious infections [81]. As a result of 
opposition, the most of them have experienced a slow decline in utilization. It is worth mentioning that 
the number of newly approved antibiotics by the FDA has been steadily declining since the 1980s. This 
drop is attributed to the high level of risk discovered in the studies of these new antibiotics. Antimicrobial 
peptides are being considered as potential alternatives to traditional antibiotics. AMPs are essential 
elements of the innate immune system and have a wide range of activities that can defend the host 
against various pathogenic microorganisms, such as viruses, bacteria, parasites, and fungi [82]. However, 
the process of identifying and extracting AMPs is both costly and time-consuming. The utilization of drug 
combinations has garnered growing interest due to its ability to improve therapeutic effectiveness and 
minimize adverse effects. Due to the challenge of exploring effective medicine combinations from a vast 
number of possibilities, we must utilize artificial intelligence technology to address the afore mentioned 
issues. It utilized quantitative structure–activity relationship (QSAR) descriptors and artificial intelligence 
(AI) algorithms to discover 50 new antimicrobial peptides (AMPs) from a pool of 100,000 randomly 
generated peptides [83]. The in vitro bacteriostasis assay demonstrated that this model has a 94% 
accuracy rate in finding active peptides. In addition, several physical and chemical characteristics such as 
charge, hydrophobicity, isoelectric point, and aggregation propensity, as well as peptide sequence, can be 
employed as features to train artificial intelligence (AI) models [84-88]. Utilizing AI-based technology has 
the potential to greatly decrease the expenses and time required for conducting research [77, 89] aimed 
at identifying and validating viable candidates in vitro [90]. Moreover, due to the need for large training 
data to improve crucial parameters, current AI-based AMP models need the establishment of numerous 
public AI-based AMP databases. Artificial intelligence techniques can expedite the exploration of 
favorable antibiotic combinations in the antibiotic combination approach. The databases contain physical 
parameters such as lipophilicity [91], chemo genomics data, and molecular fingerprints. While AI 
demonstrates effectiveness in AMPs and antibiotic combination predictions, there remains sample 
opportunity for enhancement. Regarding AMPs, their limitations stem from the quantity and accuracy of 
the database [92]. Most AI-based AMP approaches are binary classification models that do not take into 
account continuous activity information [93]. Hence, our next work will focus on comprehending the 
utilization of AMPs continuous activity data to construct an AI model capable of precisely forecasting the 
activity of AMPs against certain bacteria. Existing widely used public databases for antibiotic 
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combinations need sufficient data to thoroughly investigate several characteristics for artificial 
intelligence (AI) models. Nevertheless, the inclusion of many characteristics, such as lipophilicity [94], 
chemo genomics data, and molecular fingerprints, greatly influences antibiotic combinations [81, 95]. 
Consequently, routinely employed AI models exhibit very low accuracy. In the future, we aim to combine 
antibiotic data with various attributes using AI approaches to identify more effective antibiotic 
combinations for certain diseases. This will be possible due to advancements in data collection, making 
the process faster and easier. 
 
DEVELOPMENT OF AI PHAGE THERAPY 
Phage treatment, along with small-molecule drugs and AMPs, has been an important approach in 
combating antibiotic resistance [96, 97]. Bacteriophages, which are natural predators of bacteria, have 
undergone co-evolution with their bacterial hosts for a staggering 3.8 billion years. They are an essential 
component of the human micro biome [98]. Phage treatment, in contrast to antibiotics, has significantly 
greater specificity, hence reducing disruptions to the microbiota and limiting the spread of antibiotic-
resistant bacteria caused by antibiotics [99]. Multiple instances of clinical success have already been 
documented [100]. This section outlines the systematic process of designing phage therapy, which 
consists of four sequential steps: phage identification, prediction of phage virion proteins (PVPs), analysis 
of phage lifestyle, and research of phage-host interactions. It also discusses the role of artificial 
intelligence (AI) in each stage. Recent advancements in metagenomic sequencing have brought attention 
to the crucial significance of viruses in many ecosystems [101, 102]. In order to tackle this increasing 
importance, cutting-edge AI-powered methods have been created for the identification, labeling, and 
examination of viral sequences in intricate metagenomic datasets [103,104]. Seeker is a deep learning-
based program that quickly identifies various bacteriophages, even when they have very little similarity 
in their genetic sequences to recognized phage families [105]. It utilizes a combination of machine 
learning and protein similarity methods to independently retrieve, annotate, and evaluate the metabolic 
effects of viruses in metagenomic assemblies. This surpasses the capabilities of conventional virus 
identification algorithms [106]. Furthermore, VirSorter greatly improves the precision and scope of virus 
sequence identification in metagenomic datasets by employing multiple classifiers to accurately detect a 
diverse array of viruses [107]. Furthermore, Phage Boost, an innovative machine learning technique that 
focuses on feature space and is specifically developed for rapid and comprehensive detection of 
prophages, greatly improves the process of identifying bacteriophages [108]. 
 
CHALLENGES  
This paper provides a concise and methodical overview of applications based on artificial intelligence. 
Initially, we provided a concise overview of classical approaches and their inherent constraints. 
Subsequently, we employed illustrative examples to demonstrate the enhancements that AI technologies 
bring to these conventional methodologies. Ultimately, we put out potential avenues for future research 
regarding various AI applications. AI-based AST and WGS-AST approaches have recently been used to 
quickly and accurately identify and describe antimicrobial resistance (AMR). WGS-AST approaches 
specifically assist physicians in achieving personalized treatment for chronic and complex antibiotic 
resistant illnesses [109]. Nonetheless, the effectiveness of these approaches relies on the thoroughness 
and excellence of the database housing the extensive clinical data [52, 110]. Despite the existence of 
numerous public databases for antimicrobial resistance, the absence of a consistent standardization and 
irregular updates to the data hinder the efficient training of AI-based AMR predictive models [37, 111]. At 
present, the collection of AMR data has become rapid and affordable due to advancements in AI-based 
AST approaches and sequencing techniques. Our objective is to develop a comprehensive AMR database 
capable of integrating advanced AI algorithms to enhance the accuracy of AMR prediction. While it is well 
acknowledged that the comprehensive collection and dissemination of AMR-related information might 
enhance our understanding of AMR development patterns and improve antibiotic usage strategies [66, 
112] only a limited number of scientists are now prepared to volunteer their data. Therefore, our main 
objective is to concentrate on the creation of AI algorithms that possess exceptional predictive precision 
while utilizing a limited training dataset. However, current AI-based algorithms do not utilize multiple 
biomarkers to enhance predictive accuracy [113] and prevent misdiagnosis. Therefore, we are interested 
in utilizing AI to investigate the most effective combinations of multiple biomarkers. These combinations 
can then be integrated into CDSSs to provide guidance for making informed clinical decisions. 
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CONCLUSIONS 
This article has examined the latest advancements in artificial intelligence for addressing obstacles and 
exploring potential linked to antimicrobial issues. Artificial intelligence is making remarkable 
advancements in various fields of human endeavor. Deep learning and machine learning are specialized 
branches of artificial intelligence that address complex problems through the utilization of vast quantities 
of data. Currently, a vast quantity of data pertaining to antimicrobials may be acquired from several 
sources. In addition, highly efficient computers equipped with huge storage devices can rapidly interpret 
this data, providing valuable insights. Researchers in the field of antibiotics have turned to artificial 
intelligence (AI) methods to address various issues. Currently, significant research is being conducted on 
the implementation of artificial intelligence (AI) in antibiotics, which has created new opportunities. By 
implementing AI, the time required for diagnostics is significantly decreased, going from days to hours. In 
addition, artificial intelligence is aiding in the discovery of new antimicrobial resistance (AMR) and 
mutations. The amount of antimicrobial substances present in water supplies can be accurately predicted. 
Nevertheless, there exist significant obstacles when it comes to implementing AI in the context of AMR. 
For instance, many applications just classify the output as either resistant or susceptible, without taking 
into account an intermediate category that falls between the susceptible and resistant categories. This can 
result in an inaccurate diagnosis. In addition, often single-variable characteristics are examined and 
linked to antibiotic genes. Nevertheless, it is widely acknowledged that numerous characteristics have a 
role in creating or recognizing AMR. Hence, it is necessary to develop multivariate/interactive models. 
The reliability of results acquired from training imbalanced data is questionable. Models are mostly 
trained on sequences from specific geographical regions, which may not yield universally applicable 
results. Data management is a significant issue of concern. The ongoing study on the integration of AI into 
AMR is still under progress, and further exploration is required before contemplating its widespread 
implementation in clinical and healthcare settings. 
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