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ABSTRACT 
Cardiomyopathy encompasses a diverse group of myocardial disorders that compromise the structural and functional 
integrity of the heart muscle, often leading to impaired contractility, arrhythmias, and progression to heart failure. 
Among the various genetic contributors, mutations in the TNNC1 gene which encodes cardiac troponin C, a key calcium-
binding component of the troponin complex have been implicated in both hypertrophic and dilated cardiomyopathy. 
TNNC1 plays a crucial role in regulating myocardial contraction through calcium-mediated signaling. Alterations in its 
function can disrupt calcium sensitivity and sarcomeric dynamics, contributing to abnormal cardiac remodeling and 
clinical deterioration. Understanding TNNC1-associated cardiomyopathy offers valuable insights into genotype-
phenotype correlations and paves the way for precision-targeted therapeutic strategies. In this study, computational 
methods were employed to screen and identify candidate inhibitors targeting cardiomyopathy. 
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INTRODUCTION  
Cardiomyopathy refers to a group of structural and functional disorders of the myocardium that impair 
the heart’s ability to pump blood efficiently [1-5]. It encompasses various subtypes, including dilated, 
hypertrophic, and restrictive forms, each characterized by distinct pathological features and clinical 
outcomes [6,7]. These conditions may arise due to genetic mutations, chronic hypertension, metabolic 
disorders, or infections, and often progress to heart failure, arrhythmias, or sudden cardiac death. 
Understanding molecular mechanisms and genetic basis of cardiomyopathy is essential for improving 
early diagnosis, risk stratification, and targeted therapeutic strategies [8,9]. 
Biochemical Pathway 
Mutations in the TNNC1 gene, encoding cardiac troponin C, disrupt calcium-binding affinity and impair 
the function of the troponin complex [10]. These alterations compromise myofibrillar interactions and 
cardiac muscle contraction, leading to defective calcium regulation. Consequently, these molecular 
dysfunctions contribute to the onset and progression of cardiomyopathy [11]. This pathway elucidates 
the biochemical cascade from gene mutation to clinical pathology.  
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Figure 1. Explains the Molecular cascade of Cardiomyopathy 

MATERIAL AND METHODS 
Retrieval of Protein biological information and 3D structure 
The UniProt database serves as a fundamental resource in bioinformatics, providing a comprehensive and 
well-curated repository of protein sequences along with associated annotations [12]. It is extensively 
utilized in various fields of biological research and integrates data from trusted sources, including Swiss-
Prot, TrEMBL, and PIR. UniProt delivers detailed information on protein functions, sequence properties, 
structural attributes, and taxonomic classification. 
The Protein Data Bank (PDB) is a publicly accessible digital archive that houses three-dimensional 
structural information of biological macromolecules, including proteins, nucleic acids, and their 
complexes [13]. It features structural data contributed by scientists globally, derived mainly from 
experimental methods like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and 
cryo-electron microscopy. PDB plays a crucial role in advancing structural biology, facilitating drug 
discovery, and supporting computational modeling efforts. 
Validation 
The three-dimensional model of TNNC1 was evaluated for stereochemical quality using the PROCHECK 
[14] tool, available through the SAVES (Structural Analysis and Verification Server) platform [15]. To 
further validate the structure, a Ramachandran plot was generated to examine the distribution of 
backbone dihedral angles relative to amino acid residues [16, 17]. The structural integrity and accuracy 
were also assessed by comparing sequence-to-structure alignment and analyzing stability using energy-
based metrics, including the Z-score provided by the ProSA program, which benchmarks the model 
against experimentally determined protein structures [18]. 
Structure-based virtual screening using molecular docking 
Molecular docking is a computational technique employed to simulate the interaction between small 
molecules and target proteins, playing a crucial role in drug discovery and lead optimization [19]. It aims 
to discover new chemical compounds that can bind efficiently to specific protein sites, potentially 
triggering the desired biological effect. The effectiveness of virtual screening is closely linked to a 
thorough knowledge of the protein’s structural characteristics and energy profile [20]. 
Docking is an essential method in structure –based drug design [21], used to investigate different ligand 
conformations and predict how they interact within the binding sites of target proteins. One widely used 
tool for this process is GLIDE (Grid-Based Ligand Docking with Energetics), which accurately predicts 
ligand binding orientations and estimates their affinity [22]. It utilizes a multi-step hierarchical screening 
process that analyzes the active site of the protein to identify optimal ligand interactions. 
In this study, a structurally refined model of the TNNC1 protein was subjected to structure-based virtual 
screening using GLIDE. The Vander Waals parameters were adjusted with a scaling factor of 1.0 and a 
partial charge cutoff value of 0.25. A docking grid of dimensions X A0x YA0x Z A0 was constructed to 
encompass the binding site of interest. Ligands for docking were sourced from the Comprehensive Marine 
Natural Products Database (CMNPD) library [23]. These compounds were converted into three-
dimensional structures at a physiological pH of 7.0±2.0 using the LigPrep module within Maestro 
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(Schrodinger, LLC, New York), applying the OPLS_2004 force field [24]. Tautomer’s, ionization states, and 
stereoisomers were generated using default parameters to ensure energetically favorable conformations. 
Following ligand preparation, compounds with the most favorable energy profiles underwent flexible 
docking targeting the predicted active site of the TNNC1 protein. This was executed through a stepwise 
protocol within the GLIDE module. Initially, High Throughput Virtual Screening (HTVS) mode was used to 
rapidly screen and eliminate less promising candidates. The top 10% of hits were then subjected to 
Standard Precision (SP) docking for more accurate evaluation. Subsequently, the highest-ranking ligands 
were further refined using Extra Precision (XP) mode to identify the most accurate binding 
conformations. After docking, the leading poses were optimized for bond geometry and rescored using 
the GLIDE Score function. The top candidates were then evaluated for pharmacokinetic suitability by 
analyzing their ADME [20] (Absorption, Distribution, Metabolism, and Excretion) properties. 
ADMET 
Evaluating the computational ADME (Absorption, Distribution, Metabolism, and Excretion) 
characteristics of ligand molecules offers critical insights into their potential as viable drug candidates 
[25]. This assessment plays a crucial role in the early phases of drug development, allowing researches to 
identify and exclude compounds with poor pharmacokinetic behavior, thereby enhancing the likelihood 
of success in subsequent clinical trials. 
Ligands with favorable Glide scores and energy profiles were further evaluated for their pharmacokinetic 
and physiochemical characteristics using the QikProp, a Schrӧdinger tool [26, 27]. This platform employs 
predicts absorption, distribution, and overall drug-likeness. Integrating these QikProp predictions with 
molecular docking data and in-depth structural analysis enabled the identification of promising lead 
compounds for targeting the TNNC1 protein. 
The toxicity profile of the ligands calculated using online platform ProTox 3.0 on the cytochrome P450 
enzyme. It gives information of each ligand is inhibits the enzyme activity or non-inhibitor of the enzyme. 
 
RESULTS AND DISCUSSION 
Retrieval of protein structures, followed by structural analysis and validation 
Acquisition of protein structure 
The three-dimensional crystal structure of TNNC1 was retrieved from the Protein Data bank (PDB) using 
the identifier 1J1D_A. The structure was chosen based on its high resolution (2.61 A0), completeness, and 
suitability for molecular docking studies. Prior to docking, the structure was prepared using Schrodinger 
software by eliminating water molecules, irrelevant chains, and heteroatoms. Additionally, polar 
hydrogen atoms were added, and Kollman charges were assigned to ensure the protein was properly 
configured for further computational analysis. 
Validation of the TNNC1 Protein Model 
To confirm the structural reliability of the TNNC1 protein model, a Ramachandran plot analysis was 
performed (Figure 2). This assessment demonstrated that 91.5% of the amino acid residues were situated 
within energetically favorable regions, reflecting a high degree of stereochemical correctness. In addition, 
the VERIFY_3D tool was utilized to evaluate the alignment between the linear amino acid sequence and 
the protein’s three-dimensional environment [24]. Results revealed that 90 % of the 159 residues had a 
compatibility score above 0.2, supporting the model’s structural soundness. 

 
Figure 2: The Ramachandran Plot depicts stability of the protein TNNC1 
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Figure 2 The Ramachandran analysis revealed that 91.5% of residues were located in the most favorable 
conformational regions, which is considered indicative of a highly accurate and reliable model. 

 
Figure 3: The Protein TNNC1 VERIFY_3D 
 
The VERIFY_3D of the protein TNNC1 protein showing 90% of the protein had a compatibility score 
above 0.2. The ProSA-web server was also employed to evaluate global and local model quality (figure 3 
and 4) [28]. By comparing the TNNC1 model to proteins of comparable size within the Protein Data Bank 
(PDB), the tool confirmed the model’s validity. 
 

 
Figure 4: The determination of nativity of the protein TNNC1 using X-ray and NMR 

The calculated Z-score from ProSA was -6.36, placing the TNNC1 model within the range typically observe 
for native protein structures obtained via experimental techniques such as X-ray crystallography and 
NMR spectroscopy. 
 

 
Figure 5 The model quality of the TNNC1 
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A knowledge-based energy plot using ProSA showed local model structural variations across the 
sequence (Figure 5). Energy values calculated over sliding windows (10 and 40 residues) mostly 
remained below the baseline, suggesting that the structure is locally stable. 
Local Folding Pattern of the Protein TNNC1 

 
Figure 6: A 3D ribbon model of TNNC1 generated using using Accelrys studio shows the presence 

of α helices and β sheets 
 
PDBsum analysis of the Protein TNNC1 
Visual inspection and secondary structure analysis confirmed that TNNC1 contains α helices, β sheets. 
The PDBsum was used to generate a schematic view of these structural motifs, outlining their distribution 
throughout the protein (figure 7). 

 
Figure 7: PDBsum Server prediction of Folding’s in TNNC1 

 
Figure 7 presents the secondary structure of the TNNC1 protein. It consists of 9 helices and 2 β sheets 
 
Prediction of Active Sites Using Computational tools 
To identify potential binding regions in TNNC1, computational approaches such as CASTp and SiteMap 
were employed [29-31]. CASTp utilized both Connolly’s and Richards’ surface models to locate four 
significant hydrophobic cavities (Table 1.), indicating likely interaction site for ligands or substrates. 
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Table 1: The Active sites assessment using CASTp and SiteMap 

S.NO. 
Active site 
predicting 
server/tool 

Amino acids Volume (Å) 

1 CASTp 

2,3,4,5,6,7,8, 
8,10,11,86, 
88,104,112, 
121,124,126, 
128,132,135, 
136,138,139, 
140,142,152, 
153,155,156, 
157,158,159, 
160,161 

1141.690 

2 SiteMap 

4,5,7,8,11,12, 
16,82,83,85, 
86,87,88,89, 
92,159,160,161 

215.061 

 
The active site prediction using CASTp and SiteMap. Showing similar hydrophobic sites. 
Among these, two prominent binding pockets were consistency identified by both CASTp and SiteMap. 
These sites correspond well with known protein-protein interaction regions, suggesting their relevance in 
the functional activity of TNNC1. 
Virtual Screening and Molecular Docking  
A structure-based virtual screening (SBVS) strategy was implemented to identify potential small-
molecule binders targeting TNNC1 [32]. A 24.74 Å × 57.73 Å × 32.97 Å grid was defined over the 
predicted active site to enable docking. Ligands from the Comprehensive Marine Natural Products 
Database (CMNPD) were processed using Schrodinger’s LigPrep module, which refined the geometries 
and considered multiple ionization and tautomeric states. 
From an initial pool of 30,000 compounds, a total of 60,000 confirmers were generated. These subjected 
to multi-step docking using HTVS, SP and XP protocols in Glide. A total of 41 ligands exhibited strong 
binding affinities, and the top 5 were shortlisted based on Glide scores (Table 2). 
Hydrogen bond analysis revealed interactions with bond lengths ranging from 1.67 Å to 3.62 Å (Table 2) 
these interactions were further visualized using Accelrys Discovery Studio, confirming the stability and 
specificity of ligand binding to TNNC1 [33]. 

Table 2: Indicating the ligand- TNNC1 interactions 
S. 
NO. 

Ligand (D) Glide 
Score 

Glide 
Energy(kcal/mol) 

H- Bond H – bond 
Distances 
(Å) 

 
 
D1 

 

 
 
-8.715 

 
 
-65.475 

 
D1-ASP139 
D1- ASP 
139(A) 
D1- PHE 
156(A) 
D1-MET 120 
(A) 

 
2.44 
3.24 
3.34 
2.75 

 
 
D2 

 

 

 
 
-7.950 

 
 
-63.52 

 
D2 – GLU161 
D2 – GLU96 
D2- LYS92 
 

 
1.95 
2.03 
1.91 
 



 
 
       

ABR Vol 16 [4] July 2025                                                                    39 | P a g e                              © 2025 Author 

 
 
D3 

 

 
 
-7.556 

 
 
-59.582 

 
D3-ASP139 
D3-ASP2 
D3- LYS92 
D3-LYS92(A) 

 
1.81 
2.38 
2.60 
2.99 

 
 
D4 

 

 
 
-6.982 

 
 
-56.915 

 
D4-ASP139 
D4- ASP2 
D4-ASP2(A) 

 
1.83 
1.81 
3.28 
 
 

 
 
D5 

 

 
 
-6.728 

 
 
-53.871 

 
D5-ASP139 
D5-ASP139 
D5-
ASP139(A) 
D5-ASP2(A) 
D5-ASP2(A) 

 
1.80 
1.67 
3.23 
3.60 
3.62 
 

 
D1- TNNC1 Protein 

           
D2 – TNNC1 Protein                                                                                                                               
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D3 – TNNC1 Protein 

           
D4 – TNNC1 Protein 

         
D5 – TNNC1 Protein 

                
Figure 8: TNNC1- drug interactions shown in 3D-2D pattern 
 
ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) 
Physicochemical Attributes 
The top 5 ligand candidates were assessed using QikProp (Schrodinger Suite) for their physicochemical 
suitability. All compounds met acceptable criteria for molecular weight (≤ 669.091), hydrogen bond 
donors (≤ 3), and acceptors (≤ 6.8), suggesting good drug-likeness. 
Pharmacokinetic Parameters 
Human Oral Absorption (HOA) is a critical pharmacokinetic parameter during early drug development, 
reflecting a compound’s potential for effective systemic exposure. In this study, all candidate ligands 
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displayed favorable HOA values ranging 100 %, suggesting good oral bioavailability and alignment with 
acceptable absorption criteria [34] (Table 3). 
Aqueous solubility, an important factor influencing intestinal absorption and systemic distribution, was 
evaluated using the QPlogS descriptor. The solubility values obtained for the ligands ranged from -4.11 to 
-6.384, which are within the acceptable range for orally administered drugs (Table 3.). 
The QPPCaco descriptor was used to estimate intestinal permeability across the Caco-2 cell monolayer 
model, which serves as a proxy for gut-blood barrier penetration. Predicted permeability values ranged 
from 441.784 to 9906.038, indicating that the ligands possess sufficient capacity for intestinal absorption. 
Additionally, Protein binding affinity, particularly toward human serum albumin (HSA), was assessed via 
QPlogKhsa values. The results, which ranged from 0.182 to 0.828, fall within pharmacological acceptable 
thresholds, implying appropriate distribution behavior and limited risk of extensive protein binding that 
could compromise bioavailability (see Table 3) 

Table 3: Determined ADME Properties using QikProp 

Ligand Num
ber 

Physicochemical Properties Pharmacokinetic Properties Drug Likeness Properties 

m
ol_M

W
 

donorH
B

 

acceptH
B

 

Q
PlogS 

H
O

A%
 

Q
PPCaco 

Q
PlogKhsa 

Q
PlogPw

 

Q
PlogBB

 

CNS 

Q
PlogH

ERG 

Rule O
f Five 

Rule O
f Three 

Q
PlogPo/w

 

D1 366.543 3 6.5 -5.099 100 441.784 0.182 9.478 -2.459 -2 -5.989 2 0 2.389 
D2 669.085 3 3.4 -4.111 100 5630.075 0.654 5.981 0.339 -2 -2.703 2 0 2.902 
D3 221.318 1 6.1 -6.144 100 9906.038 0.828 1.488 0.696 -2 -2.927 0 0 2.605 
D4 360.492 1 5.7 -4.822 100 1171.148 0.574 7.926 -0.672 -2 -3.913 0 0 1.922 
D5 350.579 0 5 -6.384 100 2594.031 0.5 3.64 -0.906 -1 -6.174 1 1 1.055 

 
Drug-Likeness Evaluation 
All selected ligands complied with Lipinski’s Rule of Five and Jorgensen’s Rule of Three, two widely 
accepted criteria for drug-likeness (Table 4). Their lipophilicity (QPlogPo/w) values ranged from 1.055 to 
2.902. Synthetic accessibility score, computed using the QikProP platform, ranged from 1.54 to 2.24, 
indicating that these compounds are reasonably easy to synthesize [35, 36]. 

Table 4: Admissible ADME Data Set 
S. 
No. Descriptor ADME Property Permissible Ranges / 

Recommended Value 

1 CNS Predicted central nervous system activity on -2 
to +2 scale –2 (inactive) to +2 (active) 

2 mol_MW Molecular weight of the molecule 130 to 725 

3 DHB Estimated number of hydrogen bonds donated 
by solute in aqueous solution 0 to 6 

4 AHB Estimated number of hydrogen bonds accepted 
by solute in aqueous solution 2 to 20 

5 QPPcaco Predicted apparent Caco-2 cell permeability 
(nm/sec) <25 = poor, >500 = great 

6 QPlogPw Predicted water/gas partition coefficient 4.0 – 45.0 
7 QPlogPo/w Predicted octanol/water partition coefficient –2.0 – 6.5 
8 QPlogS Predicted aqueous solubility, log S in mol/dm³ –6.5 – 0.5 
9 QPlogKhsa Predicted binding to human serum albumin –1.5 – 1.5 
10 QPlogHERG Predicted IC₅₀ for HERG K⁺ channel blockage Below +5.0 
11 QPlogBB Predicted blood/brain partition coefficient –3.0 – 1.2 

12 % Human Oral 
Absorption 

Predicted human oral absorption on 0 to 100% 
scale >80% = high; <25% = poor 

13 Rule Of Five Number of violations of Lipinski’s Rule of Five Maximum is 4 

14 Rule Of Three Number of violations of Jorgensen’s Rule of 
Three Maximum is 3 

15 Synthetic Feasibility Predicted synthetic feasibility on scale of 1 to 10 0 = high feasibility; 10 = least 
feasible 

16 Lipophilicity Predicted lipophilic nature of the ligand 
calculated from pIC50 – LogP min –6; max +3 
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Toxicity Profiling 
Toxicological evaluation focused on the potential of the ligands to inhibit Cytochrome P450 (CYP450) 
enzymes. Using Pro Tox 3.0 server, the compounds were classified as inhibitors or non – inhibitors of 
various CYP450 isoforms (Table 5), providing insight into possible drug interactions and metabolism [37, 
38]. Overall, the ligands demonstrated strong ADMET characteristics, low toxicity, and feasible synthesis, 
highlighting their potential as therapeutic agents for cardiomyopathy. 
 

Table 5: Overview of Toxicological properties 
S.  No. CYP1A2 CYPC19 CYP2C9 CYP2D6 CYP3A4 
D1 -Neg. -Neg. -Neg. -Neg. -Neg. 
D2 -Neg. -Neg. -Neg. -Neg. -Neg. 
D3 -Neg. -Neg. -Neg. -Neg. -Neg. 
D4 -Neg. -Neg. -Neg. -Neg. -Neg. 
D5 -Neg. -Neg. -Neg. -Neg. -Neg. 

 
Table 5 illustrates the possible toxicological impact of ligands D1 to D5 on the cytochrome P450 enzyme. 
It explains whether each ligand, along with the cardiomyopathy drugs, functions as an inhibitor (+Pos. 
Values) and a non-inhibitor (-Neg. Values) of the P450 system. 
 
CONCLUSION 
This study presents a comprehensive computational approach to identify potential inhibitors targeting 
the TNNC1 protein, a critical regulator of myocardial contraction implicated in cardiomyopathy. Using 
structural bioinformatics tools, a reliable 3D model of TNNC1 was developed and validated through 
Ramachandran plot, ProSA, and VERIFY_3D analyses, ensuring stereochemical accuracy. Structure-based 
virtual screening of marine natural product libraries, followed by molecular docking via GLIDE, identified 
five ligands (D1–D5) with strong binding affinity and specific interactions with key residues such as 
ASP139 and ASP2. ADMET profiling revealed that all selected ligands exhibited favorable physicochemical 
properties, high oral absorption (HOA = 100%), suitable solubility (QPlogS within –6.5 to 0.5), and 
acceptable permeability across the Caco-2 model. The ligands complied with Lipinski’s Rule of Five and 
Jorgensen’s Rule of Three, affirming their drug-likeness. Moreover, toxicity analysis through ProTox 3.0 
confirmed that none of the compounds inhibit cytochrome P450 enzymes, indicating a low risk of 
metabolic interference or adverse effects. Overall, this study not only elucidates the structural and 
functional aspects of TNNC1 but also proposes novel lead compounds with strong inhibitory potential 
and favorable pharmacokinetics. These findings warrant further in vitro and in vivo investigations to 
validate their therapeutic efficacy against cardiomyopathy. 
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