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ABSTRACT 
Insecticide resistance and environment threat due to injudicious use of chemical pesticides for insect pest management 
employs the introduction of a new alternative as biological control. Entomopathogenic nematodes possessing reasonable 
biological control attributes belongs to genera Heterorhabditis and Steinernema. They have mutualistic association with 
bacterial genus Photorhabdus and Xenorhabdus respectively. Entomopathogenic nematodes are highly effective to soil 
born insect pests and are safe to nontarget organisms. Pathogenic effect of entomopathogenic nematode and their 
symbiotic bacteria kill the insects within 24-48 hours as compared to days and weeks required for insect killing by other 
biological control agents. Entomopathogenic nematodes are lethal to insects, motile, self perpetuating in field, tolerate 
short time exposure to agrochemicals and easy to mass multiply, necessitate its exploration against a number of insects 
of order Homoptera, Diptera, Coleoptera and Lepidoptera. EPN are also compatible with fertilizers, biological 
insecticides, fungicides, herbicides, and growth regulators, thus providing an opportunity of application together. This 
review article facilitates the researchers to overview of the work done and move forward related to different aspects of 
entomopathogenic nematode. 
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INTRODUCTION  
Indian economy is based on agriculture as more than 60% of its population directly or indirectly 
dependent on agriculture which contributes nearly 17.9% to country’s GDP [1]. India would require more 
than 450 million tons of food grains to fulfill the requirement of 1.65 billion people by 2050 which will be 
a very difficult task [2]. The substantial increase in food grain production over the years has helped to 
meet the food security needs of the country, but the number of biotic and abiotic stress causes the yield 
losses up to a large extent. Estimated crop losses caused by insect pests to major agricultural crops in 
India is about 17.5% and in monetary terms the value is 86, 3884 million rupees [3]. Therefore pesticide 
consumption was also increases year by year as 45.39 thousand tons pesticides were consumed in the 
year 2012-13 and 65% of them were shared by insecticides [4]. Besides affecting the environment and 
non targeting organisms, continuous and tremendous use of chemical pesticides creates high selection 
pressure on pest population which force to mutation inside the insects and development of pesticide 
resistance in insects pest. Biological control is a key constituent of integrated pest management that has 
generated interest among farmers for ecological and sustainable insect pest management. Detailed study 
of these Entomopathogens can direct to useful exploitation in biological control programmes of 
Integrated Pest Management. 
Nematodes are microscopic roundworms, colorless, pseudosegmented, and without appendages, having 
pseudocoelome, may be free-living, parasitic or predaceous. It may be pathogenic to animal, human and 
plants. Entomopathogenic nematodes (EPNs) are pathogenic to insects therefore can be used as a 
component of integrated pest management against many insect pests. Seven families of nematode include 
species that have potential for the use as EPN [5]. Only few families have potential of insect killing but 
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some of them are difficult to mass production (tetradomatids), have narrow host specificity or have 
modest virulence (e.g., sphaeruliids). EPNs possessing optimal biological control properties are only in 
the Steinernema and Heterorhabditis genera.  
Habitat: 
Steinernematids and Heterorhabditids are exclusively soil organism. They are cosmopolitan, having been 
isolated from ecologically diverse soil habitats including crop fields, gardens, forests, grasslands and 
deserts. Soil property such as soil texture, type, bulk density, organic content, soil water potential and pH 
can affect Infective juvenile behavior, survival, and infectivity to hosts. Anaerobic condition in water-
saturated soils and soils with contents of organic matter may become a limiting factor. High bulk density 
can impede nematode migration since soil porosity can be too narrow to allow efficient movement [6]. 
Steinernematids are ambusher in nature so they are present on upper surface of soil while 
Heterorhabditids are cruiser i.e. they may present on deeper layer of soil. 
Mutualistic bacteria: 
Photorhabdus and Xenorhabdus both genera of bacteria shows mutuallistic relationship with 
Heterorhabditis and Steinernema genera of nematode respectively  and pathogenic relationship with host 
insect [7]. Both bacteria are belonging to the family Enterobacteriaceae they are motile (Peritrichous 
flagella) nonendospore froming, facultative anaerobe, gram negative rod. They secrete a variety of toxins, 
antifungal, antibacterial agents and hydrolytic enzymes such as lipases, phospholipases, chitinases, lucife-
rase and proteases [8]. Nematodes relies on bacteria for killing its insect host, creating suitable 
environment for its development by producing antibiotics that suppress competing secondary microbes, 
breakdown of host tissue in to usable nutrients and to serve as food source. Bacterium required 
nematodes for protection from external environment, penetration into host haemocoel, and inhibition of 
host’s antibacterial protein. Antimicrobial compounds of Xenorhabdus and Photorhabdus are Anthra-
quinones, Macrolides, Nucleosides, Hydroxystilbenes [9]. Genitein, Nematophein [10], Indole, Xenoxides, 
Xenorhabdins, Xenocoumacins [11].  
 
LIFE CYCLE AND MODE OF ACTION 
The free-living, non-feeding, nonexcrteory and developmentally ceased juvenile stage 3 of both the 
genera (Heterorhabditis and Steinernema) is act as infective juvenile (IJ3), they are motile having 
chemoreceptors, high reproductive potential like pathogens, highly virulent, kill their hosts rapidly, and 
easily culturable. When a host has been located with the help of chemoreceptors or by other means, the 
nematodes penetrate into the insect body, usually via natural body openings (mouth, anus, spiracles) or 
areas of thin cuticle i.e. intersegmental membrane. Multitrophic interaction occurs between the 
Nematode-Bacteria and Insect. The infective juveniles can penetrate directly through the cuticle or 
indirectly via gut to enter the haemocoel. To enter through the cuticle, the nematodes utilize physical 
force such as to-and-fro movement by thin trachea. Heterorhabditis, use an anterior tooth to penetrate 
directly into the haemocoel. To enter through the gut, they use physical force and/or hydrolytic enzymes 
to digest the midgut tissues to gain access into the hemocoel [12]. Within the insect’s haemocoel, the 
nematodes and bacteria overcome the host’s immune response [13]. 
However, many humoral and cellular factors are involved to counteract the nematodes such as Insect may 
use antibacterial proteins, enzymes and/or phagocytosis followed by nodulation, and the insect’s 
haemocytes may encapsulate the nematodes followed by melanization. Sometimes the nematodes can 
overcome the insect defenses. Thus, S. glaseri is primarily encapsulated by larvae of the Popillia japonica, 
but it escapes from the capsule and successfully infects its host [14] because the nematode has surface 
coat proteins that suppress the host’s immune response and destroy the haemocytes [15]. A 
Heterorhabditis species avoids encapsulation in tipulid larvae by removing the sheath from the second-
stage cuticle during host penetration [16]. 
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Fig. 1 Life cycle of Entomopathogenic Nematode 

Insect behaviors such as high defecation (scarab grubs), low CO2 release (lepidopterous pupae and scarab 
grubs), formation of impenetrable cocoons (many lepidopterans and scarabs), walling-off nematode 
killed individuals that avoid contamination to other insects in a nest (termites), and aggressive grooming 
and leaking behavior that reduces infective juvenile contact (scarab grubs) [18]. In some insects, the usual 
routes of entry may be difficult to get due to hindrance created by Oral filters (wireworms), too narrow 
mouth opening (insects with piercing and sucking mouthparts), anus may be constricted by muscles 
(wireworms), or spiracle opening may be covered with septa (wireworms) and by sieve plates (scarab 
grubs). Moreover, the invading nematodes can produce immune-suppressor that destroy the antibacterial 
factors produced by the insect and facilitate the mutualistic bacteria to produce variety of insecticidal 
toxins, antifungal, antibacterial agents and hydrolytic enzymes such as chitinases, lipases, phospholipases, 
luciferase and proteases [8,19,20] that quickly kill the host within 24-48 hours. Nematodes also produce 
paralyzing exotoxins and cytotoxic and proteolytic enzymes. The above phenomenons are dependent on 
the tritrophic interaction among the insect host, nematode and associated bacteria which contribute to 
the variable efficacy of EPNs against different insect species. 

 
Table no. 1 List of host insects targeted by entomopathogenic nematodes 

Order Common name Scientific name Crop Nematode 
spp. 

References 

Diptera:      
Sciaridae Fungal gnats Bradysis spp Green house 

mushrooms 
S. feltiae [21] 

Tephritidae Mediterranean fruit 
fly, Peach fruit fly 

Ceratitis capitata,  
Bactrocera zonata 

Fruit pest H.bacteriophor, 
S.feltiae,  

[22] 

Lepidoptera      
Tortricidae, Codling moth Cydia pomonella Soil H. zealandica [23] 
Pyralidae Oriental fruit moth Grapholita molesta Peach S.carpocapsae,  

S. feltiae. 
[24] 

Sesiidae Peachtree borer Synanthedon 
pictipes 

Stone fruits S. pictipes and 
S. carpocapsae 

[25] 

Tortricidae, Filbertmoth Melissopus 
Latiferreanus 

Hazelnuts S. carpocapsae [26] 

Noctuidae 
 

Black Cutworm Agrotis ipsilon 
 

Turf grass H.bacteriophor, 
S.carpocapsae  

[27] 

 
 

Tobaccocattterpillar, 
Tomato fruit borer 

Spodoptera litura, 
Helicoverpa 
armigera 

Foliar crops H. indica and   
S. glaseri 

[28] 
 

[17] 
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Plutellidae Diamond Back Moth 
(DBM) 

Plutella xylostella Cabbage 
 

H. indica and   
S. glaseri 

[28]  
 

Pieridae Cabbage butterfly Pieris rapae Cabbage H.bacteriophor [29] 
Gelechiidae Potato tuber moth Phthorimaea 

operculella 
Potato H. idica and S 

bacteriophora 
[30] 

 Tomato leaf miner Tuta absoluta Tomato S. feltiae and 
H.bacteriophor 

[31] 

Coleoptera:      
Scarabeidae White Grub Holotrichia 

parallela 
Peanut S. longicaudum  [32] 

Chrysomeliae Stripped beetle Acalymma vittatum Cucurbit  S. riobravis  [33] 
Thysanopter      
Thripidae Thrips Frankliniella 

occidentalis 
Vegetable, 
Ornaments  

H.bacteriophoa, 
S. feltiae  

[34] 

 
Mass production 
Entomopathogenic nematodes are currently produced by two methods as in vivo or in vitro (solid and 
liquid culture) [35]. 
In vivo production: 
Production methods for culturing entomopathogenic nematodes in insect hosts have been reported by 
many authors [36]. Culturing of EPN through in vivo method requires a live insect hosts. This method 
employs minimal technology and involves the use of a surrogate host insect. The most common insect 
host used for in vivo laboratory and commercial EPNs production is the late instar larvae of greater wax 
moth, Galleria mellonella, [37]. It is based on the White trap method [38], which utilizes natural 
movement of infective juveniles (IJ) as they move away from the host cadaver when nutrient resources 
get depleted. Yield of IJs is depends on choice of nematode and insect host species. Generally yield of 
nematodes is proportional to size of insects [39,40] but susceptibility to infection is negatively correlated 
with host size or age [39]. Therefore mature insect is less susceptible as compare to larval stage. This 
method is not much cost effective for large scale industry [37] although it can be ideal for cottage industry 
or for laboratory study. 
In vitro production: 
In vitro culturing of entomopathogenic nematodes is based on introducing nematodes to a pure culture of 
their symbiont in a nutritive medium. The only stage that can be commercially used is the dauer juvenile 
(DJ) which is a nonfeeding and nonexcreating stage and morphologically distinct, formed as a response of 
food scarcity and adverse environmental conditions. Mass production of entomopathogenic nematodes 
has started from the first large scale in vitro solid media production by Glaser and coworkers [41] to the 
three dimensional solid media (media suspended in foam) in vitro process by Bedding [42]. Wout’s 
medium, wheat flour medium, dog biscuit medium, egg yolk medium can be used in solid media process 
but wouts media is most cost effective [43]. Yield of IJs depends on ingredient of culture media such as 
lipid, protein salt and carbon sources. Lipid components act as nematode’s natural host composition and 
are most suitable [44]. Increasing the lipid quantity and quality leads to increases in nematode yield [45]. 
Solid media process of Steinernema and Heterorhabditids production is more advantageous for small scale 
industry. First attempts to culture EPN in liquid media were made by Stoll [46] to the in vitro liquid 
fermentation production method [47]. Liquid fermentation process required maintenance of oxygen level 
and removal of CO2 and toxic gases for the multiplication of EPNs. In liquid fermentor process symbiotic 
bacteria are first introduced followed by the nematodes [48]. Components for liquid culture media have 
been reported as soy flour, yeast extract, canola oil, corn oil, thistle oil, egg yolk, casein peptone, milk 
powder, liver extract and cholesterol [49,50]. Culture times vary depending on media and species, and 
may be three weeks [51]. Once the culture is completed, nematodes can be harvested from media via 
centrifugation [49]. Liquid-fermentation process is highly efficient for the production of several 
Steinernema species but not suitable for Heterorhabditids [52] and useful for large scale industry. IJs 
yields in liquid culture depend on the degree of recovery which can be affected by nutritional factors, 
aeration, CO2, lipid content, and temperature [50]. 
Formulation and storage:  
An important prerequisite for successful application of an antagonist in biological control is its stable 
commercial formulation. A variety of formulations have been developed to facilitate nematode storage 
and field application including charcoal, alginate and polyacrylamide gels, baits, clay, peat, polyurethane 
sponge, vermiculite, and water-dispersible granules [53]. Active nematodes must be immobilized for the 
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stability of their lipid and glycogen reserves. Formulated entomopathogenic nematodes can be stored for 
2 to 5 months depending on the nematode species and storage media and conditions. Low storage 
temperature (2-70C) generally suspended metabolic activity and therefore enhances their shelf-life [54]. 
However some warm adapted species such as H. indica and S. riobrave do not store well at temperature 
less than10ºC [55]. The quality of the nematode product can be determined by nematode virulence and 
viability assays, age, and the ratio of viable to non-viable nematodes [56]. 
 

Table no. 2 Commercial products available in international market 
Nematode species Product formulation Country 
Steinernema  carpocapsae Biosafe, Biovector USA 
 Sanoplant   Switzerland 
 Boden Nutz;linge Germany 
 Helix Canada 
 Green commandos, Soil commandos India 
S.feltiae Nemasys UK 
 Entonem USA 
 Nemaplus  Austria 
S. riobrave Vector MG    USA 
Heterorhabditis megidis Nemasys UK 
 Larva nema  USA 
H.bacteriophora Cruiser, Nematop, Nema green  USA 

 
Application and factors affecting efficacy:  
In some instances, EPNs have proven to be ecofriendly and effective alternatives of chemical pesticides, 
but in several other cases they have failed to compete successfully with chemical pesticides [53]. 
Insufficient results of entomopathogenic nematodes as pest control agents are caused by improper 
handling, transport, and storage [57]. The nematode efficacy can be enhanced by development of new 
technology in nematode production, formulation, quality control, storage, application timing and delivery, 
and mainly in selecting target pests and habitat. Entomopathogenic nematodes are living organisms, and 
affected by both biotic and abiotic factors during applications. Abiotic factors such as temperature, 
humidity, soil pH, UV light, dessication etc. Entomopathogenic nematodes work best in sandy soil with a 
pH between 4 and 8 [37]. S. ribrave, S. glaseri, and H. indica are heat tolerant species while S. feltiae, H. 
megidis and H. marelatus are adapted to cooler temperature [58]. All biological control agents including 
nematodes require a specific condition for their effectiveness. Desiccation and high temperature are the 
most important abiotic factors affecting survival of EPNs [59]. Nematodes have limited temperature 
range (20 °C and 30 °C) for their effectiveness. Treated area should be kept moist for at least 2 weeks [60] 
to avoid desiccation. In soil, infective juveniles are attacked by a number of biotic factors such as 
pathogens or predators viz. phages, bacteria, protozoans, nematophagous fungi, predacious mites and 
nematodes, etc. [61] and act as antagonist of EPNs while Paenibacillus popilliae [62] and Bacillus 
thuringiensis [63] work synergistically with EPNs.  
The most commonly used application method for entomopathogenic nematodes is spraying directly on to 
the field. 1 billion nematodes per acre is recommended rate for the broadcast application of EPNs to 
control most soil insects [53]. Entomopathogenic nematodes can be applied with nearly all agrochemical 
equipments of agriculture and horticulture ground including hand or ground sprayers, mist blowers, and 
electrostatic sprayers or as aerial sprays [64]. The infective juveniles can withstand pressure up to 1068 
kPa and pass through all common nozzle type sprayers with openings of about 100 μm in diameter [53] in 
diameter. Rate of nematode application can be increased or decreased according to target pest and 
conditions but generally 25 infective juveniles per cm2 are recommended dose for the nematode 
application but it can be increased or decreased depending upon target pest [58]. 
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Fig. 2 Benefits of Entomopathogenic Nematodes
 
CONCLUSIONS 
Entomopathogenic nematodes have great potential to use as biological control agent against insect pest 
especially for soil dwelling insects in integrated pest management programme. Host seeking capability, 
quick knockdown, exemption from registration, ease of applicatio
fecundity and environment safety are attributes which makes the Entomopathognic nematode special and 
exclusive from many other Biological control agents. They also have a broad host range, exhibit 
synergistic effect with other control agents and are compatible with some agrochemicals for short time 
exposure. Many developed countries such as USA, Canada, Australia, Germany, UK etc. have excellent 
marketability in international market. 
and cryptic habitats in India are also tremendous. Recent emphasis 
advance technology with special emphasis on mass production; storage and formulation are required to 
implement safer and effective pest control methods. 
which regulate their population dynamics and on how their population can be manipulated to enhance 
the epizootic in insect-pest populations. Finally, apart from their use as bio
to science for understanding the evolution of symbiosis and parasitism as tritrophic interaction between 
Nematode-Bacteria-Insect.  
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