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ABSTRACT 
Colorectal cancer (CRC) is the world's second most lethal malignancy and the third most common sarcoma. The vast 
majority of CRCs develop gradually from adenomatous cysts or benign cysts. CRC is the major reason for cancer-related 
deaths globally, accounting for approximately 10 percent of total cancer diagnoses annually. Furthermore, while the 
prevalence and lethality of CRC had reduced as a consequence of the evolution of more effective medicines and improved 
diagnostic tests, the burden remains, and new CRC prevention strategies are necessary. Traditional therapies like 
surgery, chemotherapy, and radiation have been used for decades. Yet, in addition to its benefits, chemotherapy has 
significant downsides. In this context, a range of plant-derived bioactive compounds is employed in ethnomedicine to 
replace these conventional therapies. Andrographolide (AG), a diterpenoid that is the main component of Andrographis 
paniculata, has piqued the interest of various academic researchers due to its broad spectrum of pharmacological 
activities. Because of the AG phytochemical template's responsiveness to numerous synthetic transformations, several 
analogs with robust biological activities in vitro and in vivo have been developed. This review aims to depict the efficacy 
of andrographolide and its analogs in the fight against CRC and provide a quick overview of conventional therapies used 
in CRC. 
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INTRODUCTION 
Colorectal cancer (CRC) is the world's second-leading lethal malignancy and is also the third 
most prevalent sarcoma [1]. Most CRCs develop gradually from benign or adenomatous cysts [2]. 
Globally, CRC is liable for around 10% of all cancer diagnoses and cancer-related deaths [1]. It is the 
second most prevalent kind of cancer in women and the third most common type in men. Women have a 
25% lower rate of occurrence and lethality than males do. In 2035, it is anticipated that there would be 2–
5 million newly diagnosed cases of malignancy worldwide as a result of continued development in 
emerging countries [3, 4]. CRC presently has an annual incidence rate of 38.7 per lakh of individuals and 
13.9 deaths [5]. Older age, male sexuality, familial, ecological, socioeconomic, dietary, physical exercise, 
tobacco, and lifestyle variables may increase the chance of CRC [6, 7]. Typically, 71% of CRC tumors are 
found in the colon and 29% in the rectum[8]. However, the acceptable risk of the population accounts for 
the majority (around 70%) of CRC cases (sporadic), individuals who have a family history of the disease 
may account for up to 25% of occurrences and inherited genetic colorectal cancer syndromes account for 
around 10% of cases [9]. The incidence and death of CRC have decreased as a result of the advancement 
of more efficient therapies and improved diagnostic testing, but the burden still exists and new CRC 
preventative measures are required [10]. Chemotherapy and surgery are typically used to treat CRC. 
Chemotherapies can kill cancer cells by damaging their DNA or activating several different signaling 
pathways. The cell cycle, translation, and DNA repair are a few of these signaling cascades [11]. However, 

AAddvvaanncceess    
iinn      

BBiioorreesseeaarrcchh  

http://www.soeagra.com/abr.html
mailto:sudheercology@gmail.com


 
 
 

ABR Vol 15 [2] March 2024                                                                 82 | P a g e                             © 2024 Author 

the sort of cancer that CRC patients have affects the efficacy of anticancer medications. Past research, 
particularly MPE investigations, has demonstrated this. Cytotoxicity, tolerance to therapy, and patient 
suffering are the three primary concerns with chemotherapy [12]. A range of plant-derived bioactive 
compounds is used in phytotherapy as an alternative to chemotherapy, radiation therapy, 
immunotherapy, targeted treatment, and surgery because of their anti-tumor and chemoprotective 
activity and low risk of side effects whilst being employed to treat colon cancer [13]. In this regard, 
Andrographolide (AG), the main diterpenoid component of Andrographis paniculata, has drawn 
considerable interest from several academic researchers for its broad range of pharmacological actions. 
Given its structure's adaptability to several synthetic transformations, many analogs with strong 
biological functions both in vitro and in vivo have been produced using the AG phytochemical template 
[14]. Also as per numerous investigations, AG has been widely used as a tool in the battle against cancer 
[15]. On account of this, the present review discusses Conventional therapies and the effectiveness of 
andrographolide and its derivatives in the treatment of CRC. 
 
ETIOPATHOGENESIS 
The mechanism by which a benign polyp spreads and turns into a deadly adenocarcinoma from a healthy, 
normal colon epithelium is discussed in detail. Fearon and Vogelstein claim that several epigenetic and 
genetic aberrations have accumulated in important genes involved in silencing tumor suppressor genes 
(TSGs) and activating oncogenes, leading to CRC. In this context, two main routes for CRC development 
were identified. One route includes suppressing the expression of TSGs and adenomatous polyposis coli 
(APC). This is mutated in FAP patients' germlines and accounts for 85% of all CRC. The second route, 
which is responsible for roughly 15% of total rare instances and HNPCC syndrome, involves the 
mutational silencing of MMR-related proteins (MSH2, MLH1, and PMS2) [16-18]. Three other main 
mechanisms, including CIN, MSI, and CpG island methylator phenotype (CIMP), are linked to the 
etiopathogenesis of CRC [19]. Of now, the American Joint Committee on Cancer (AJCC) recommended the 
tumor-nodes-metastasis (TNM) paradigm as the main foundation for CRC staging [20]. Fig. 1, Created 
with BioRender.com 
Chromosomal instability (CIN): 
The most frequent genetic instability in CRC is chromosomal instability, defined as a substantial rise in 
the addition or deletion of either the whole or major sections of chromosomes. Almost 85% of 
adenocarcinoma transitions [21, 22] have CIN, which is depicted by oncogene activation (KRAS and 
BRAF), TSG silencing (APC and TP53), and loss of heterozygosity for the long arm of chromosome 18 (18q 
LOH) shows the presence of many TSGs, including SMAD2, SMAD4, and Deleted in Colorectal Carcinoma 
(DCC), which encourages the development of CRC lesions [21, 23, 24]. Fearon and Vogelstein presented a 
multi-phase genomic paradigm where the primary stage is the suppression of APC, followed by KRAS 
genetic alterations mostly in the adenoma phase, and the last stage is the deletion of chromosome 18q 
and inhibition of TP53 on chromosome 17p upon escalation to carcinoma. [16, 24, 25]. Moreover, it has 
recently been discovered that the adenocarcinoma sequence model includes genetic abnormalities in 
TGF-R and PI3KCA [26, 27]. Moreover, both familial and sporadic CRCs have a strong APC/β-
catenin/Wnt-Tcf pathway expression signature [28]. 
Microsatellite instability (MSI): 
Another form of genomic instability is defined by tandem repetitions in repetitive DNA sequences of 1 to 
5 base pairs. Around 15–25% of Sporadic CRC cases and 95% of Lynch syndrome cases are caused by MSI 
[29]. Moreover, genetic variations in one of the MMR genes (MLH1, MSH2, MSH6, and PMS2) usually 
cause MSI CRCs in patients with Lynch syndrome; whilst defects in the MLH1 or MSH2 genes raise the 
odds of getting cancer (70-80%), MSH6 or PMS2 genetic abnormalities have a relatively modest risk (25-
60%) [30]. Nevertheless, sporadic MSI CRCs commonly exhibit failure of MMR function as a result of 
aberrant DNA methylation that silences MLH1 [31, 32]. The TGF-Receptor II (TGF-RII) has mutations in 
more than 80% of MSI-CRC cases [33]. TGF-RII mutations are a frequent source of neoplastic 
development in the late and metastatic stages of MSI-High CRCs and are identified in adenomas that 
either have severe dysplasia or advance to malignancy [34]. Moreover, MSI-high CRCs frequently include 
mutations in the TGF- pathway's Smad2 and Smad4 genes [34]. Another target in the MSI-high CRC 
pathway is the pro-apoptotic protein TSG BAX [35]. Despite early adenoma mutations, BAX gene 
variations like TGF-RII aberrations might appear in oncogenic advancements [36]. Additional genes, 
which are seen in MSI-high CRC at a low-frequency range (roughly 20%), include alterations in the MMR 
genes hMSH3 and hMSH6, Insulin Growth Factor Type 2 Receptor (IGF-IIR), BLM gene, PIK3CA, G protein-
coupled receptor of Prostaglandin-endoperoxide synthase 2 (PTGS2), and Cyclin D1 [37]. 
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CpG island methylator phenotype (CIMP): 
CpG island methylator phenotype (CIMP) is the 3rd avenue via which CRC develops [37]. It is now 
understood that transcriptional deactivation caused by DNA hypermethylation at TSG promoter CpG 
islands, which results in gene silence, is a key factor in the development of tumor formation [38]. 
Depending on the amount of methylation indicators, the CIMP phenotype may also be divided into CIMP-
high and CIMP-low groups [39]. Shen and colleagues examined the genetic as well as epigenetic 
aberrations in 97 original CRC specimens and discovered that CIMP-high tumors are linked with MSI 
progress (80%) and BRAF alteration (53%); CIMP-low tumors are related to KRAS alterations (92%); and 
CIMP- tumors have a greater incidence of p53 mutation (71%) [40]. 
CONVENTIONAL TREATMENTS OF COLORECTAL CANCER 
Depending on the stage, respectability, biology, comorbidity, and patient's condition, a bunch of treatment 
interventions, including surgical procedures, radiotherapy, and chemotherapy, have been employed 
clinically for treating cancer. These treatment options may be used alone, in combo, or gradually [41]. 
Endoscopic Procedure:  

 
Figure 1: Mechanism of CRC progression 

New flexible  
endoscope technology and other endoscopic tools have raised a demand for less invasive procedures and 
broadened their applications [42]. En-bloc endoscopic mucosal resection, endoscopic submucosal 
dissection, and endoscopic full-thickness resection are suitable endoscopic resection methods for T1 
tumors, depending on the tumor size  [4]. When carried out by skilled endoscopists, endoscopic excision 
is both safe and more affordable than surgical procedures [43]. 
Surgery: 
Although chemotherapy, radiation therapy, and immunotherapy have developed quickly, surgery remains 
the mainstay of potential treatment. Surgical resection is the sole treatment option for CRC that has 
progressed to this stage. Hence, it is crucial to enhance surgical alternatives for treating advanced CRC [4, 
44].  
Radiotherapy: 
To shrink the tumor and protect the anal sphincter, radiation may be given to patients with loco-regional 
rectal cancer either as an adjunctive treatment after surgery to avoid relapse or prior to operation. 
Hospice care is available for people with problematic tumors and advanced or metastatic CRC to help 
them feel better and live longer [45]. 
Chemotherapy: 
Chemotherapy for CRC is generally categorized as a treatment for unresectable or recurring instances, 
postoperative chemotherapy, and preoperative chemotherapy [45]. The following are examples of 
frequently used anticancer medications that the Japanese National Health Insurance will pay for and that 
have been licensed for the treatment of CRC: 
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Cytotoxic medications include capecitabine, irinotecan hydrochloride hydrate, oxaliplatin (OX), 
trifluridine/tipiracil hydrochloride (FTD/ TPI), fluorouracil (5-FU), 5-FU + levofolinate calcium (l-LV), 
tegafur uracil (UFT), tegafur gimeracil oteracil potassium (S-1), UFT + calcium foli Bevacizumab (BEV), 
ramucirumab (RAM), aflibercept beta (AFL), cetuximab (CET), panitumumab (PANI), regorafenib hydrate 
(REG), encorafenib, and binimetinib are examples of molecularly targeted medications. 
Pembrolizumab is an inhibitor of immune checkpoints (Pembro). 
Based on a meta-analysis, neoadjuvant chemotherapy may prolong survival in patients suffering from 
locally advanced colon cancer compared to adjuvant chemotherapy without worsening surgical morbidity 
[46]. Additionally, it has been suggested that total neoadjuvant chemotherapy (TNT), also known as 
preoperative chemotherapy combined with chemoradiation, offers similar advantages [47]. 
Fluoropyrimidine-based chemotherapy increases survival in stage III tumors that have been surgically 
removed and in a fraction of high-risk stage II colon cancers. Adjuvant chemotherapy spanning six 
months has been the norm for years. However, the IDEA team discovered that for patients with stage 
III colon tumors with at least modest risk, limiting drug treatment to three months could lessen toxicity 
(like decreased progressive neuropathy) while not affecting therapeutic efficacy  [48].  
Andrographis paniculata 
Andrographis paniculata (Burm. f) Nees is an annual plant that belongs to the Acanthaceae family 
and is colloquially referred to as the "king of bitters". It is found throughout tropical and 
subtropical Asia, as well as in South-eastern Asia and India. A. paniculata is also known as Kalmegh 
in India, Chuan-Xin-Lian in China, Fah Tha Lai in Thailand, Hempedu bumi in Malaysia, Senshinren in 
Japan, and "green chiretta" in Scandinavian countries [49-52]. This plant is acknowledged as a 
popular remedy for several disorders, including liver problems, according to both Indian 
pharmacopoeia and Ayurvedic medicine. It is available in over 26 unique polyherbal formulations 
[49, 53]. 
PHYTOCHEMICAL CONSTITUENTS OF Andrographis paniculata 
Andrographis paniculata includes a substantial number of flavonoids, labdane diterpenoids, stigmasterols, 
xanthones, quinic acids, noriridoids, and polyphenols, as per empirical evidence on its phytochemistry 
[49-52]. Diterpene lactones (deoxy andrographolide, andrographolide, neoandrographolide, and 14-
deoxy-11, 12-didehydroandrographolide), diterpene glucosides (deoxyandrographolide19β-d-glucoside), 
and flavonoids (5,7,2´,3´-tetramethoxy flavanone and 5-hydroxy-7,2´,3´-trimethoxy flavone) are among 
the bioactive constituents found in leaves of A. paniculata [54]. More importantly, Labdane diterpenoids, 
which may be found in free and glycoside forms, are the primary ingredients of A. paniculata. The labdane 
diterpenoids include andrographolide and andrographiside, neoandrographolide,6 acetyl-
neoandrographolide, 14-deoxy-11,12-didehydroandrographolide, 14-deoxy-11,12-
didehydroandrographiside, 14-deoxy-andrographolide, 14-deoxyandrographiside, andrographanin 
andropanoside, isoandrographolide andrographatoside, andropanolide and bis-andrographolides A, B, C, 
and D6 [50].  
ANDROGRAPHOLIDE AS A KEY PHYTOCHEMICAL 
Ent-labdane andrographolide (AG) is extracted from the annual plant Andrographis paniculata (Burm. f.) 
Wall ex Nees is one intriguing natural substance that has garnered substantial attention in recent years 
[55]. The positive benefits of the plant extracts are thought to be caused by andrographolide, which 
makes up 1.38 to 3.12% of A. paniculata in dried forms [56]. Andrographolide has been the object of 
study interest due to its broad range of medicinal prospects ever since its initial discovery in 1951 [57]. 
Due to the plant's well-known intense bitterness, it is frequently referred to as the "King of Bitters" [58]. 
It is also known by its chemical name, 3-[2-[decahydro-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-
methylene-1-napthalenyl] ethylidene] dihydro-4-hydroxy-2(3H)-furanone]. It demonstrates a staggering 
variety of biological processes [58]. As per assertions, the mere existence of α-alkylidene γ-butyrolactone, 
the D12 (13) double bond, the C-14 hydroxyl, and the D8 (17) double bond, as well as other compounds, 
is what gives AG its vicious impact on various cancer cell types [59]. Remarkably, the only strategy to halt 
the tumor cells from multiplying was to extract A. paniculata from methanol and then into a 
dichloromethane fraction. The methanolic extracts were further fractionated into AG, which was the most 
efficient method of combating cancer [60].  
 
BIOACTIVE AGENT ANDROGRAPHOLIDE 
AG has been associated with a wide range of pharmacological effects as a bioactive component, and its 
treatment toolkit is always broadening. Ayurveda, Unani, Siddha, and traditional Chinese medicine have 
all noted the medicinal benefits of this substance. It has properties that are hepatoprotective, anti-HIV, 
antigenotoxic, pro-apoptotic, cardioprotective, anti-obesity, antioxidant, antipyretic, anti-diarrheal, anti-
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leishmanial, anti-fertility, choleretic, anti-allergic, antibacterial, antifungal, and antiviral. It additionally 
possesses properties that are anticancer, anti-HIV, antigenotoxic, and immune response [61-63].  Relying 
on toxicity studies conducted using experimental models, it is also proven as a safe chemical. To realize 
their full potential in the pharmaceutical industry, research is still being done on evaluating 
phytochemicals for further therapeutic properties and drug action mechanisms [52, 64, 65].  
ANTI-CANCER PROPERTIES OF KING OF BITTERS 
Globally, the rising number of cancer-related deaths is a severe problem. Proliferation, resistance to 
growth-inhibitory signals, insensitivity to apoptosis, progression of angiogenesis, invasion, and 
metastasis are the six traits of cancer that make cancer cells immune-resistant. The growth and 
development of cancer are significantly influenced by the tumor microenvironment [66]. 
Phytoconstituents are important anticancer agents that regulate cancer-related pathways that cause 
cancer [67]. As demonstrated by a variety of investigations, AG affects the signaling pathways that 
regulate the cell cycle, apoptosis, and adhesion of cells [68]. As a result, AG can be utilized to treat 
malignancies, including CRC, by acting as an anticancer agent [69].  
ROLE OF ANDROGRAPHOLIDE & ITS ANALOGS IN COLORECTAL CANCER 
A gruelling study carried out in the past on the phytochemical AG gives us in-depth insights into how 
efficient it is in treating multiple medical conditions. It also inspires us to look more into AG and its 
derivatives in the hopes of advancing the research. The significance of AG and its analogs in colorectal 
cancer is primarily addressed in this section. In a Somrudee reabroi et al. study, the HT29 colon cancer 
cells were subjected to a silyl andrographolide analog 3A.1's (19-tert-butyldiphenylsilyl-8, 17-epoxy 
andrographolide) anti-cancer potential. The drug inhibited Wnt/β-catenin signaling using a GSK-3-
dependent route. It lowered the expression of Wnt genes of interest implicated in carcinogenesis and cell 
cycle progression, resulting in decreased cell survival and growth and, ultimately, apoptosis. [70]. SRS07, 
one of the AG derivatives, showed potential in vitro anticancer properties in cancerous cells such as 
HCT116 cells by producing G1 phase cell cycle arrest that ultimately led to apoptotic death via triggering 
caspase 8 and Bid [71]. The finest derivative was SRS07, exhibiting GI50 values between 0.8 to 1.7 µM. The 
first-generation AG derivatives’ primary anticancer molecule was SRJ09 [3,19-(2-bromobenzylidene) 
andrographolide], whereas SRS07 was SRJ09's acetylated product. After being treated with SRJ09 and 
SRJ23 for 48 hours, a sizable number of HCT-116 cells displayed severe nuclear consolidation and 
breakage, which are indications of apoptotic cell death. HCT-116 cells that were treated with 3,19- (3-
chloro-4-fluorobenzylidene) andrographolide (SRJ23) displayed G1 phase arrest and induction of the 
sub-G1 population, which are signs of apoptotic cells. Consequently, phase-specific cell cycle inhibitors 
and effective apoptosis inducers may be created by including a benzylidene pharmacophore at 3,19 
locations in the andrographolide scaffold [72]. AG derivatives 3,19-(2-bromobenzylidene) and 3,19-(3-
chloro-4-fluorobenzylidene) exhibited greater cytotoxicity and had growth-inhibiting effects on MCF-7 
and HCT-116 cell lines. In xenografts, the 3,19-(2-bromobenzylidene) andrographolide stimulated p21 
expression and decreased Cdk-4 expression without impacting Cyclin D1 to cause G1 arrest at 
concentrations of 100–400 mg/kg (i.p.) in HCT-116 and MCF-7 cancer cells [72]. Moreover, in vitro, 
studies have demonstrated that SRJ09 can sparsely penetrate the DLD-1 colon cancer multicell layer 
(MCL) and induce significant cytotoxic effects (IC50 = 41 µM, which is four times lesser than that of AG) 
[73]. In a work by Wang and associates [74], it was demonstrated that AG directly binds and stabilizes 
Bax by not affecting its mRNA level. Treatment with AG (10 mM) dramatically raised Bax expression and 
concurrently improved 5-FU-induced cell death in a 5-FU-resistant HCT116 cell line (HCT116/5-FUR). 
Other processes, such as increased expression of the Bax: Bcl-2 protein ratio, caspase induction, and 
greater interaction of death ligand with receptors that promote cytochrome c release might potentially 
contribute to the synergistic impact [75].By suppressing Notch signaling, the growth of SW-480 cell 
lines is halted by AG. Upregulation of ROS causes SW-480 cells to become stuck in the G0/G1 stage of the 
cell cycle. Besides,  B-cell lymphoma-2 (Bcl-2) expression is suppressed, whilst the  Bax is increased [76]. 
AG, either alone or in conjunction with cisplatin, promoted apoptosis in CRC Lovo cells by increasing Bax, 
Bcl-2 expression, and Fas/FasL interaction, which boosted cytochrome c release and activated caspases 
[75]. Another research by Hsueh-Ping Chao et al. examined MMP2 expression and action in CT26 and 
HT29 cell lines following AG treatment (0.3–3 µM). The results demonstrated that AG exposure reduced 
MMP2 activity in a dose-dependent approach, with the largest impact being attained at 3 µM in both 
without changing the expression of the MMP2 protein. Similar to what was shown with CT26 cells, AG 
inhibited the HT29 cells' capacity for invasion [77]. Sumit Kumar Dey et al. tested the cytotoxicity of 
halogenated Di-spiropyrrolizidino oxindole (viz. proline series) analogs of andrographolide (CY2, CY14, 
and CY15) in research by employing an array of six lineages of human cancer cells from various origins, 
that involves HCT116 cell lines. Their most powerful derivative was CY2, with a GI50 on HCT116 of 10.5 M. 
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In addition, it was discovered that after 36 hours of exposure to CY2 at increasing concentrations in 
HCT116 cells, the MMP level had decreased. MMP disruption was not very severe in cells treated with AG. 
This work shows that the caspase-mediated mitochondrial pathway is the mechanism through which 
both andrographolide and CY2 cause apoptosis in HCT116 cells. CY2 disrupted MMP to a greater extent 
than andrographolide  [78]. AG promotes ER stress and death in colon cancer cell lines (T84, HCT116, and 
COLO 205), thus inhibiting the uncontrolled development of neoplasia, according to research by Banerjee 
et al. [79]. The antiproliferative effects of AG on the colon cancer SW620 cell line were described by Zhang 
et al. AG, a potential treatment for CRC, suppresses the signaling pathways for TLR4, MyD88, NF-κB-p65, 
and MMP-9 [80]. According to Henhena et al., AG's antioxidant properties drove it to suppress the activity 
and expression of the flag genes for CRC progression. The effectiveness of AGP as an epigenetic as well as 
genetic modulator was demonstrated. The chemopreventive efficacy of AG on CRC in fighting the 
carcinogen azoxymethane was also observed [81]. Similarly, AG has been studied for efficacy in 
treating CRC, either separately or in association with capecitabine, due to its considerable 
pharmacological properties and encouraging preclinical study findings (NCT01993472). The inclusion of 
AG in clinical studies unambiguously supported its significant contribution [82]. In intense mechanistic 
research by Kandanur et al., compound 3g (3,19-diacetyl-12-phenylthio-14-deoxy-andrographolide), a 
powerful cytotoxic agent towards the HCT-116 cell line indicates that the molecule is a powerful cell cycle 
suppressor and apoptosis activator [83]. Additionally, 3c (3,19-diacetyl-12-(2-methylthio) phenyl-
amino)-14-deoxy-andrographolide), an effective cytotoxic compound with an equivalent mechanism, was 
discovered through testing the newly synthesized 3,19-diacetyl-C-12-substituted-14-deoxy-
andrographolide derivative products 3a-f against the HCT-116 cell line [84]. Besides, the substances 
namely AG, neoandrographolide, 14-deoxyandrographolide, and 14-deoxy-12-hydroxy andrographolide 
showed the maximum cytotoxicity on the colon cancer cell lines HT-29 and HCT-116 as well as notable 
and substantial antiproliferative effect on HCT-116 [85]. According to Miaomiao Yuan et. al, by inhibiting 
NADPH oxidase, ROS, Erk1/2, P38 MAPK, NF-κB, and AP-1 upregulation in (Human Colorectal cancer) 
HCT-116 cells, AG successfully reduced IL-8 production as well as angiogenesis in the tumor 
microenvironment [86]. Imran Khan et al. described the mechanism of action of AG concerning its effects 
on the erratic Hh signaling pathway in HCT-116 cells. These studies demonstrate that AG inhibits colon 
cancer cell growth and induces apoptosis via producing ROS, destabilizing the membrane of the 
mitochondria, activating caspases, and altering the appearance of Bcl2 family genes. The two primary 
mechanisms at work are cell cycle halt and Hh signal suppression. Moreover, AG promoted apoptosis via 
both intrinsic and extrinsic intracellular mechanisms. In addition, it exhibits a significant decline in cell 
survival, migration, and cytotoxicity in HCT-116 cells in a dose and time-dependent fashion [87]. 
 

Table 1: An overview of current studies looking at the effects of andrographolide and its analogs 
on CRC cell lines 

Author/ 
References  

CRC Cell Lines Effects/ Features 

[70] HT 29 Downregulated Wnt/β-catenin signaling via GSK-3 
dependent pathway, Decreased Cell viability & 
proliferation, Apoptosis. 

[71] HCT 116 G1 stage cell cycle halt triggers caspase 8 and bid, which 
causes apoptotic cell death. 

[72] HCT 116 Enhanced P21 and reduced Cdk4 expression leads to G1 
phase cell cycle arrest and apoptosis. 

[74] HCT 116/ 5-FUR Upregulates Bax expression, Enhanced 5-FU- induced 
apoptosis.  

[73] DLD -1 Cytotoxicity 
[76] SW- 480 Downregulating Notch signaling pathway, 

Generation of ROS, arrest at G0/G1. 
[75] LOVO Promotes apoptosis by upregulating Bax, Bcl2, Fas/FasL 

interaction, 
[77] CT26, HT29 Decreased MMP2 activity. 
[78] HCT 116 Decreased MMP2 level, Caspase-mediated apoptosis. 
[79] T 84, HCT 116, COLO 205 Increase in ER stress and cell death 
[80] SW- 620  Suppressing the TLR4/NF-KB/MMP-9 signaling axis 

has an anti-proliferative impact  
[83] HCT 116 Cell cycle suppressor & apoptosis activator 
[85] HCT 116, HT 29 Anti-proliferative effect & Cytotoxicity  
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[86] HCT 116 Decreased IL-8 expression, Angiogenesis by inhibiting 
NADPH oxidase and stimulating ROS, Erk ½, P38 MAPK, 
NF-ΚB, AP-1 upregulation. 

[87] HCT 116 Inhibiting Hh signaling pathway, Cell cycle arrest, anti-
proliferative effect, apoptosis, cytotoxicity, reduction in 
cell survival & migration. 

 

 
Figure 2: Various Mechanisms Acted by Phytochemical Andrographolide 

We can illustrate the different processes by which the aforementioned studies on the natural weapon 
known as AG may work on the exposed malignant cells in a substantial way feasible. Fig. 2 Created with 
BioRender.com 
 
ANDROGRAPHOLIDE LIMITATIONS 
While having excellent biological activity, AG's primary drawback is its low water solubility, which makes 
it difficult to formulate it for therapeutic use. The chemical has poor solubility in lipids as well. To find a 
better lead, several semi-synthetic analogs are being developed and tested. [52]. Its limited 
bioavailability, which is mostly due to its quick metabolism and clearance from the body, is a significant 
barrier to its clinical development [88]. Yet what is certain about AG is that several in vivo investigations, 
including several clinical trials, have shown it to be effective in treating a wide range of illness conditions, 
even at modest dosages [89]. 
APPLICATION STRATEGIES TO OVERCOME AG PHYTOCHEMICAL DRAWBACKS 
Owing to the aforementioned restrictions, different application techniques must be developed to achieve 
improved therapeutic outcomes and bioavailability. The solvent's characteristics greatly impact the 
amount of material that can be absorbed optimally. The effectiveness of phytochemical treatments is 
improved by pharmaceutical dosage forms with nanostructures that employ phytomedicine as a carrier 
of drugs. The operation of these dosage forms is highly reliant on the solvent's ability for absorption [90]. 
In order to be used therapeutically, AG has been created as micro- or nanoparticles. Vesicles, polymeric 
nanoparticles, solid lipid nanoparticles, gold nanoparticles, nanocrystals, microemulsions, 
nanoemulsions, and nanosuspensions are some of the types of nanoparticles. Alginic acid, glucan 
derivatives, and polylactic-glycolic acid are among the microparticles. [91]. As compared to the sole 
suspension, the formulation of the nanoparticles enhanced the bioavailability of AG by 241%. These 
formulations assist in overcoming AG's low solubility in water [92].  
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Table 2: Application strategies to bypass andrographolide limitations 
References  Formulation Type Features/ Delivery method 

[93] Polymeric Nanoparticles (PNPs) Delivers drugs by nanospheres and nanocapsules. 
[94] Polymeric Micelles (PM) AG is wrapped in a micelle’s composition. 

 
[95] 

 
Vesicles 

AG has been delivered to the tumor location using 
particles called liposomes. 

 
[58] 

 
Solid Lipid Nanoparticles 

Enhancing AG's absorption and effectiveness at the tumor 
location by encasing it in SLNs. 

[96] Nanoemulsions 
Microemulsions 

Good water solubility and improves uptake of AG. 

[97] Mesoporous nanoparticles Targeted medication distribution to a specific location. 
[97] Gold nanoparticles Increasing AG's tumor-specific cytotoxicity through 

targeted drug delivery. 
[98] Nanocrystals and Nanosuspensions Intended to improve AG’s dissolution. 

 
CONCLUSION 
In sum, Andrographis paniculata (Burm. f) Nees, an herbaceous plant with several common names, is the 
source of the bioactive chemical known as AG. It is renowned as a well-liked phytochemical for several 
medicinal values comprising immunological response, antigenotoxic, pro-apoptotic, cardioprotective, 
anti-obesity, antioxidant, antipyretic, anti-diarrheal, hepatoprotective, and anticancer activities. 
According to claims, the mere existence of α- alkylidene γ-butyrolactone, the D12 (13) double bond, the C-
14 hydroxyl, and the D8 (17) double bond, among others, is what gives AG its lethal effect on different 
sorts of cancer cells. Regardless of their low bioavailability and poor solubility, many semi-synthetic 
analogs are being developed and tested in search of a better lead. In this context, AG was tested against a 
multitude of malignant colorectal or colon cancer cells. The anti-cancer effectiveness of AG over cancer 
cells is compelling. Moreover, it has low to no toxicity in contrast to other CRC treatment options 
including chemotherapy. The fact that several in vivo studies, including multiple clinical trials, have 
demonstrated AG's efficacy in treating a variety of sickness conditions, even at low dosages, makes it 
definite about it. On this premise, AG and its semi-synthetic analogs are intriguing candidates that may 
serve as a starting point for synthesizing newer anti-cancer drugs. Together, this compound and its 
analogs have the potential to establish themselves as front-runners in the creation of an entirely novel 
class of chemotherapeutic medications for the treatment of colorectal cancer. 
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ABBREVIATIONS 
AG Andrographolide 
APC Adenomatous polyposis coli 
AP-1 Activator protein 1 
BAX Bcl-2-associated X 
BCL2 B-cell lymphoma 2 
BRAF v-raf murine sarcoma viral oncogene homolog B1 
BLM Bloom syndrome 
CRC  Colorectal cancer 
CIN Chromosomal instability 
CIMP CpG island methylator phenotype 
CDK-4 Cyclin-dependent kinases 4 
DCC Deleted in Colorectal Cancer gene 
ERK Extracellular-signal-regulated kinase 
ER Endoplasmic reticulum 
FAP Familial adenomatous polyposis 
HNPCC Hereditary non-polyposis colorectal cancer 
 Hh               Hedgehog signaling 
IGF-IIR Insulin Growth Factor Type 2 Receptor 
IL-8 Interleukin 8 
KRAS Kirsten rat sarcoma 
LOH Loss of Heterozygosity 
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MPE Molecular pathophysiology epidemiology 
MSH2 MutS homolog 2 
MLH1 MutL homolog 1 
MMR Mismatch Repair 
MSI Instability of microsatellite DNA regions 
MAPK Mitogen-activated protein kinase 
MMP Matrix metalloproteinases 
MyD88 Myeloid differentiation primary response gene 88 
NF-ΚB Nuclear factor kappa B 
NADPH Nicotinamide adenine dinucleotide phosphate 
PMS2 PMS1 Homolog 2 
PI3KCA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
PTGS2 G protein-coupled receptor of Prostaglandin-endoperoxide synthase 2 
ROS Reactive oxygen species 
SMAD2 Suppressor of Mothers against Decapentaplegic 2 
SMAD4 Suppressor of Mothers against Decapentaplegic 4 
TLR4 Toll-like receptor 4 
TSGs Tumor suppressor genes 
Tp53 Tumor protein p53 
Wnt  Wingless-related integration site 
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