# **ORIGINAL ARTICLE**

# **RP-UPLC Method for the Simultaneous Determination of Tenofovir Alafenamide, Emtricitabine and Dolutegravir**

Duvvada Janani1, Karavanja Dharmateja1, Kancharana Manisha1, R.A.V.N. Sai Charan D2, G. Divya

1\*

1Sri Venkateswara college of pharmacy, Etcherla, 532410. Under the department of pharmaceutical analysis, Andhra University, Visakhapatnam.

2Ctruecure Biotech LLP, Hyderabad, Telangana.

\*Corresponding author email: <u>divyagolivi07@gmail.com (ORCID: 0009-0004-8474-2374)</u>

## ABSTRACT

A simple, accurate and precise method was developed for the simultaneous estimation of the EMTC, DLTG and TNFA in Tablet dosage form by RP-UPLC technique. Retention times of EMTC, DLTG and TNFA were found to be 1.328 min,1.765 min and 2.135 min respectively. Chromatographic elution was processed through a Std BEH C18 (50 x 2.1 mm, 1.8 $\mu$ ) reverse phase column and the mobile phase composition of buffer 0.1% orthophosphoric acid (2.2 pH) and acetonitrile in the ratio of 60:40 was pumped through a column at a flow rate of 1.0 mL/min. Repeatability of the method was determined in the form of %RSD and findings were 0.9, 0.6 and 1.0 for EMTC, DLTG and TNFA respectively. LOD, LOQ values obtained from regression equations of EMTC, DLTG and TNFA were 0.34, 1.03  $\mu$ g/mL, 0.36, 1.09  $\mu$ g/mL and 0.25, 0.76  $\mu$ g/mL respectively. Three analytes were subjected for acid, peroxide, photolytic, alkali, neutral and thermal degradation studies and the results shown that the percentage of degradation was found between 0.29% and 6.41%. Retention times and total run time of two drugs were decreased and the developed method was simple and economical. So, the developed method can be adopted in industries as a regular quality control test for the quantification of EMTC, DLTG and TNFA.

**Keywors** : Tenofovir Alafenamide, Emtricitabine, Dolutegravir, Braf Inhibitor, Validation, Precision, Accuracy, Linearity.

Received 14.01.2025

Revised 20.02.2025

Accepted 24.03.2025

How to cite this article:

Duvvada J, Karavanja D, Kancharana M, Sai Charan D, Divya G. RP-UPLC Method for the Simultaneous Determination of Tenofovir Alafenamide, Emtricitabine and Dolutegravir. Adv. Biores. Vol 16 [2] March 2025. 167-176

# INTRODUCTION

Emtricitabine has the chemical formula 4-amino-5-fluoro-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan5yl].Pyrimidine-2-one belongs to the class of nucleoside reverse transcriptase inhibitors, which includes anti-HIV-1 drugs. This powder is white to off-white in color, dissolves in water at a rate of around 112 mg/mL at 25°C, and has the chemical formula C8H10FN303S with a molecular weight of 247.244 g/mol[1]. Figure 1A shows that emtricitabine has a pKa of 2.65 and a log P of -0.43. Tenofovir alafenamide fumarate2 (TAF) is a novel ester prodrug that inhibits nucleotide reverse transcriptase and is an antiviral medication. Its chemical name is propan-2-yl (2S).C21H29N605P is the chemical formula for -2-[[[(2R)-1-(6- aminopurin-9-yl]propan-2-yl]oxymethyl-phenoxyphosphoryl]amino]propanoate. It is a solid powder that dissolves in water at a rate of 4.86 mg/mL [2]. The log P for this medication is 1.6 and its pKa is 3.96 (Figure 1B). Efavirenz3 is (4S), chemically speaking. -6-chloro-4-(2-cyclopropylethynyl)-4-(trifluoromethyl)-1H-3,1- benzoxazin-2-one is one of the medications of the HIV-1Non-Nucleoside Analog Reverse Transcriptase Inhibitor family that are used to treat HIV. Its chemical formula is C14H9ClF3NO2, and its weight is 315.68 g/mol. It is a white to slightly pink crystalline powder that dissolves in water at a rate of around 0.093 mg/L at 25 °C. The log P for this medication is 4.6, and its pKa is 10.2, 12.52 (Figure-1C).

Emtricitabine, tenofovir alafenamide, and efavirenz alone as well as in combination with other medications have all been determined using a variety of analytical techniques, including spectroscopy [4]

and chromatography [5]. As per ICH guidelines [6], the author has attempted to develop and validate a simple, fast, precise, and accurate UPLC method for the simultaneous determination of emtricitabine, tenofovir alafenamide, and efavirenz in combined tablet dosage form, since there is currently no available UPLC method for this purpose.



Fig. 1: Chemical structures of A) emtricitabine, B) dolutegravir and C) tenofovir.

# **MATERIAL AND METHODS**

# Chemicals and Reagents

API of EMTC, DLTG and TNFA were obtained from spectrum Pharma Research Solutions, Hyderabad. HPLC-grade methanol and acetonitrile were procured from Merck chemical division, Mumbai, India, Potassium dihydrogen ortho phosphate, orthophosphoric acid, sodium dihyrogen ortho phosphate and HPLC-grade water were bought from Rankem, avantor performance material India limited. EMTC, DLTG and TNFA tablets were obtained from local pharmacy.

#### Method development

During the method development various mobile phase compositions consisting of methanol, acetonitrile, water, phosphate buffers and different stationary phases were executed to get fine chromatographic conditions like theoretical plates, resolution, tailing and peak shape. The processed trials were mentioned below:

#### **Optimized Chromatographic Conditions**

Liquid chromatographic UPLC system of Waters equipped with PDA (photodiode array detector), autosampling unit and Std BEH C18 (50 x 2.1 mm,  $1.8\mu$ ) reverse phase column. The mobile phase composition of buffer 0.1% orthophosphoric acid (2.2 pH) and acetonitrile in the ratio of 70:30 was pumped through a column at a flow rate of 1.0 ml/min. Column oven temperature was maintained at 30°C and the detection wavelength was processed at 275 nm. Integration of output signals were monitored and processed by waters Empower software-2.0.

#### Diluent

Depending up on the solubility of the drugs, diluent was optimized. Initially dissolved in methanol and diluted with acetonitrile and water (50:50).

## Preparation of Standard Stock Solutions

Exactly weighed 100mg of EMTC and 25mg of DLTG and 12.5 mg of TNFA poured in to three 50ml volumetric flasks alone. 10mL of diluent was added and vortexed for 20 min. Flasks were made up with water and acetinitrile (50:50) and marked as standard stock solution 1, 2 and 3 (2000 $\mu$ g/mL of EMTC, 500 $\mu$ g/mL DLTG and 250  $\mu$ g/mL of TNFA). 1ml from each stock solution was pipetted out and taken into a 10mL volumetric flask and made up with diluent to get 200 $\mu$ g/mL of EMTC, 50 $\mu$ g/mL DLTG and 25  $\mu$ g/mL of TNFA).

## **Preparation of Sample Stock Solutions**

5 tablets were weighed and the average weight of each tablet was calculated. The weight equivalent to 1 tablet was transferred into a 100ml volumetric flask and 25 ml of diluent was added and sonicated for 25 min. Further the volume was made up with diluent and filtered through 0.45  $\mu$  filter (2000 $\mu$ g/mL of EMTC, 500 $\mu$ g/mL DLTG and 250  $\mu$ g/mL of TNFA). 2ml of the resultant solution was poured in to a 10ml volumetric flask and made up with diluent (200 $\mu$ g/mL of EMTC, 50 $\mu$ g/mL DLTG and 25  $\mu$ g/mL of TNFA).

## **Preparation of Buffer**

0.1% orthophosphoric acid Buffer was prepared by diluting 1ml of concentrated orthophosphoric acid with water to up to 1000mL.

# **Method Validation**

The developed method for EMTC, DLTG and TNFA was subjected for validation for the parameters like system suitability, linearity, robustness, limit of detection (LOD), limit of quantification (LOQ), precision and accuracy as per the guidelines of ICH[6-9].

#### **RESULTS AND DISCUSSION**

## Method Development and Optimization

With different mobile phase compositions and stationary phases three different trials were executed and fourth trail was optimized. In all the 3 trials there was no base line separation in trial-1, merged peaks were observed in trail and there was poor resolution in the trial -3. Optimized chromatographic peaks were shown in Fig.2



Fig 2: Representative chromatogram of optimized trial

#### Method Validation System Suitability

The system suitability variables were estimated by preparing standard solutions of EMTC, DLTG and TNFA and the same were injected 6 times in to the chromatographic system. The variables like peak tailing, resolution and USP plate count were estimated[10-12]. The results were shown in Fig. 1 and Table 1. In the system suitability studies, plate count should be more than 2000, tailing factor should be less than 2 and resolution must be more than 2. All the system suitable parameters were passed and were within the limits.

| S. | . EMTC |             |         | DLTG  |             |         | TNFA       |       |             |         |            |
|----|--------|-------------|---------|-------|-------------|---------|------------|-------|-------------|---------|------------|
| No | RT     | USP         | Tailing | RT    | USP         | Tailing | USP        | RT    | USP         | Tailing | USP        |
|    | (min)  | Plate Count |         | (min) | Plate Count |         | Resolution | (min) | Plate Count |         | Resolution |
| 1  | 1.328  | 2958        | 1.34    | 1.765 | 4239        | 1.37    | 4.6        | 2.135 | 5185        | 1.22    | 4.7        |
| 2  | 1.327  | 2821        | 1.34    | 1.764 | 3953        | 1.27    | 4.3        | 2.136 | 4991        | 1.16    | 4.7        |
| 3  | 1.327  | 2758        | 1.34    | 1.765 | 4241        | 1.31    | 4.5        | 2.135 | 5058        | 1.16    | 4.5        |
| 4  | 1.328  | 2957        | 1.35    | 1.764 | 4326        | 1.19    | 4.5        | 2.135 | 5001        | 1.16    | 4.7        |
| 5  | 1.328  | 2534        | 1.35    | 1.765 | 3822        | 1.19    | 4.4        | 2.136 | 4987        | 1.15    | 4.7        |
| 6  | 1.327  | 3049        | 1.17    | 1.764 | 4108        | 1.23    | 4.5        | 2.135 | 5121        | 1.13    | 4.7        |

| Tabla 1. C   | watana awital                       |              | atoma for El | MTC DIT           | C and TNEA |
|--------------|-------------------------------------|--------------|--------------|-------------------|------------|
| 1 abie. 1: 5 | vstem suitai                        | литу рагаш   | elers for Er | VI I C., IJI. I U | TANG INFA  |
|              | <i>y</i> <b>o o o o o o o o o o</b> | party parter |              |                   |            |

# Specificity

Method specificity was determined by infusing the blank, placebo, standard and sample solutions in to a chromatographic system and the resulting chromatograms were evaluated for interference with the excipients, degradants and other components may expected to be present [13-18]. Blank, standard, formulation and placebo chromatograms were represented in Fig. 4.8. We did not found any additional peaks in blank and placebo at retention times of these drugs in this technique. So, this technique was said to be specific.



Fig.3: Chromatograms of a) Blank, b) Placebo, c) Standard and d) Sample.

#### Precision

Precision of the method was evaluated in terms of method precision and intermediate precision. The method precision (repeatability) was estimated by infusing 6 standard solutions and 6 sample solutions. Intermediate precision was evaluated by infusing 6 standard solutions and 6 sample solutions on different days by different employees on different chromatographic systems[15]. The peak responses of all the chromatograms were taken and standard deviation, % RSD (relative standard deviation) and percentage assay of sample solutions were calculated. The findings were represented in Tables 2 and 3. As the limit of precision was < 2(%RSD) and both the precisions were passed in this analysis process.

| S. No | Area of EMTC | Area of DLTG | Area of TNFA |
|-------|--------------|--------------|--------------|
| 1.    | 1308399      | 141741       | 79450        |
| 2.    | 1319874      | 143789       | 79650        |
| 3.    | 1334424      | 144058       | 77850        |
| 4.    | 1330955      | 142021       | 79069        |
| 5.    | 1323162      | 142845       | 78499        |
| 6.    | 1339892      | 143049       | 79860        |
| Mean  | 1326118      | 142917       | 79063        |
| SD    | 11347.2      | 924.2        | 764.1        |
| %RSD  | 0.9          | 0.6          | 1.0          |

Table.2: Repeatability results of EMTC, DLTG and TNFA

SD: standard deviation; RSD: relative standard deviation.

| Table.3: Intermediate   | precision results | s of EMTC                               | . DLTG and TNFA                       |
|-------------------------|-------------------|-----------------------------------------|---------------------------------------|
| I abicio: Intel mediate | precision result  | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | $, \boldsymbol{\nu}$ and $\mathbf{n}$ |

| S. No | Area of EMTC | Area of DLTG | Area of TNFA |  |  |  |  |  |  |  |
|-------|--------------|--------------|--------------|--|--|--|--|--|--|--|
| 1.    | 1309347      | 142451       | 78860        |  |  |  |  |  |  |  |
| 2.    | 1314245      | 143412       | 77412        |  |  |  |  |  |  |  |
| 3.    | 1322739      | 144424       | 78424        |  |  |  |  |  |  |  |
| 4.    | 1316867      | 143803       | 79803        |  |  |  |  |  |  |  |
| 5.    | 1331431      | 143584       | 77984        |  |  |  |  |  |  |  |
| 6.    | 1326250      | 144311       | 78311        |  |  |  |  |  |  |  |
| Mean  | 1065590      | 143664       | 78466        |  |  |  |  |  |  |  |
| SD    | 8167.3       | 715.1        | 813.9        |  |  |  |  |  |  |  |
| %RSD  | 0.8          | 0.5          | 1.0          |  |  |  |  |  |  |  |

SD: standard deviation; RSD: relative standard deviation.

#### Accuracy

Method accuracy was estimated at three variable concentrations of 50%, 100%, and 150% level by spiking the known amount of the drug analytes[17]. The % recovery at each level was calculated and the findings were represented in Table 4.



Fig.6: Chromatogram showing accuracy 150%injection-1

|                 | Table.4: Percentage recovery results of EMTC, DLTG and TNFA |                   |            |                 |                 |                   |            |                 |                 |                   |            |                 |  |
|-----------------|-------------------------------------------------------------|-------------------|------------|-----------------|-----------------|-------------------|------------|-----------------|-----------------|-------------------|------------|-----------------|--|
| ЕМТС            |                                                             |                   |            |                 |                 | DLTG              |            |                 |                 | TNFA              |            |                 |  |
| Spiked<br>level | spiked (µg/mL)                                              | recovery (µg/ mL) | % гесоvегу | Mean % recovery | spiked (µg/ mL) | recovery (µg/ mL) | % recovery | Mean % recovery | spiked (µg/ mL) | recovery (µg/ mL) | % recovery | Mean % recovery |  |
| 50%             | 100                                                         | 98.85             | 98.84      | 99.92           | 25              | 24.66             | 98.65      | 99.8            | 12.5            | 12.54             | 100.35     | 99.98           |  |
|                 | 100                                                         | 99.35             | 99.35      |                 | 25              | 24.78             | 99.10      | 6               | 12.5            | 12.36             | 98.89      |                 |  |
|                 | 100                                                         | 99.95             | 99.95      |                 | 25              | 25.38             | 101.53     |                 | 12.5            | 12.44             | 99.53      |                 |  |
| 100%            | 200                                                         | 200.10            | 100.05     |                 | 50              | 50.15             | 100.30     |                 | 25              | 25.01             | 100.06     |                 |  |
|                 | 200                                                         | 200.50            | 100.25     |                 | 50              | 49.66             | 99.31      |                 | 25              | 24.83             | 99.33      |                 |  |
|                 | 200                                                         | 201.53            | 100.77     |                 | 50              | 50.09             | 100.18     |                 | 25              | 25.22             | 100.86     |                 |  |
| 150%            | 300                                                         | 300.54            | 100.18     |                 | 75              | 75.78             | 101.04     |                 | 37.5            | 37.67             | 100.46     |                 |  |
|                 | 300                                                         | 300.77            | 100.26     |                 | 75              | 74.38             | 99.18      |                 | 37.5            | 37.09             | 98.74      |                 |  |
|                 | 300                                                         | 298.90            | 99.64      |                 | 75              | 74.571            | 99.43      |                 | 37.5            | 38.09             | 101.57     |                 |  |

# Linearity

Linearity of the developed method was evaluated by processing 6 different concentration levels of EMTC, DLTG and TNFA analytes over the concentration of 50-300  $\mu$ g/mL, 12.5-75  $\mu$ g/mL and 6.25-37.5 $\mu$ g/mL. Each concentration level was processed in triplicates[11, 16] The linearity plots were acquired by plotting peak response (on X-axis) versus concentration (on Y-axis). The results of the linearity were represented in Fig. 7, 8, 9 and Table 5.

|                 | EMTC      |                 | DLTG      | TNFA            |           |
|-----------------|-----------|-----------------|-----------|-----------------|-----------|
| Conc<br>(µg/mL) | Peak area | Conc<br>(µg/mL) | Peak area | Conc<br>(µg/mL) | Peak area |
| 0               | 0         | 0               | 0         | 0               | 0         |
| 50              | 338151    | 12.5            | 36858     | 6.25            | 18523     |
| 100             | 656048    | 25              | 73309     | 12.5            | 36822     |
| 150             | 993933    | 37.5            | 108797    | 18.75           | 54548     |
| 200             | 1332816   | 50              | 145292    | 25              | 72489     |
| 250             | 1656248   | 62.5            | 179487    | 31.25           | 91830     |
| 300             | 1978059   | 75              | 216518    | 37.5            | 109557    |

#### Table.5: Linearity table for EMTC, DLTG and TNFA



Fig. 7: Calibration curve of EMTC



## LOD and LOQ

LOD is lowest quantity of drug in a sample that can be identified but cannot be quantify exactly. LOQ is the lowest quantity of a drug in an analyte which can be quantitatively estimated with a suitable accuracy and precision. The LOD and LOQ values were calculated from the linearity data by utilizing standard deviation and slope of the curve[13, 17]. The resulting LOD and LOQ findings were represented in Table 6.

| able of LOD and LOQ values of EMIC, DEIG and INFA |             |             |  |  |  |  |  |  |  |
|---------------------------------------------------|-------------|-------------|--|--|--|--|--|--|--|
| Analyte                                           | LOD (µg/mL) | LOQ (µg/mL) |  |  |  |  |  |  |  |
| EMTC                                              | 0.84        | 2.53        |  |  |  |  |  |  |  |
| DLTG                                              | 0.22        | 0.67        |  |  |  |  |  |  |  |
| TNFA                                              | 0.05        | 0.16        |  |  |  |  |  |  |  |
|                                                   |             |             |  |  |  |  |  |  |  |

| Table 6: LOD and | LOQ values of | EMTC, DLTG an | id TNFA |
|------------------|---------------|---------------|---------|
|------------------|---------------|---------------|---------|

# Robustness

The method robustness was processed by introducing small variation in the optimized LC conditions such as organic phase in mobile phase ( $\pm$ 5%), flow rate (-0.27 and +0.33 mL/ min) and column temperature ( $\pm$ 5°C). The findings were shown in the Table 7.

| S.No | Variation in LC<br>conditions | EMTC % RSD | DLTG %<br>RSD | TNFA %<br>RSD |
|------|-------------------------------|------------|---------------|---------------|
| 1    | Flow rate (-) 0.27ml/min      | 1.2        | 0.9           | 1.1           |
| 2    | Flow rate (+) 0.33ml/min      | 1.0        | 1.1           | 0.7           |
| 3    | Organic phase -5%             | 0.9        | 1.1           | 0.9           |
| 4    | Organic phase + 5%            | 1.2        | 1.0           | 1.2           |
| 5    | Temperature at 25°C           | 1.3        | 0.7           | 1.3           |
| 6    | Temperature at 35°C           | 0.8        | 0.9           | 1.2           |

#### Table.7: Robustness data for EMTC, DLTG and TNFA

# Degradation Studies Alkali Degradation Studies

To 1 mL of each stock solution of EMTC, DLTG and TNFA, 1 mL of 2N NaOH was added in to a 10 mL volumetric flask and kept at 60°C for 30 min. Further, the resulting solution was made up to the mark to get 200 $\mu$ g/mL, 50 $\mu$ g/mL and 25  $\mu$ g/mL concentrations of EMTC, DLTG and TNFA respectively. From that 0.50  $\mu$ L of solution was infused in to an UPLC system and the resultant chromatograms were analysed for the stability of analytes. The findings were represented in Table 8 and Fig. 10.



Fig.10: Chromatogram for A)Alkali B) UV-degradation C) Acid D) Neutral E) Peroxide and F) Thermal degradation study.

| Type<br>of  | EMTC    |            |            | DLTG TNFA |            |            |       | TNFA       |            |
|-------------|---------|------------|------------|-----------|------------|------------|-------|------------|------------|
| degradation | Area    | %Recovered | % Degraded | Area      | %Recovered | % Degraded | Area  | %Recovered | % Degraded |
| Acid        | 1247541 | 96.96      | 3.04       | 133985    | 96.55      | 3.45       | 73202 | 98.67      | 1.33       |
| Alkali      | 1296461 | 96.90      | 3.10       | 137837    | 97.69      | 2.31       | 74792 | 98.15      | 1.85       |
| Peroxide    | 1268193 | 94.08      | 5.92       | 135238    | 97.33      | 2.67       | 73699 | 93.59      | 6.41       |
| Thermal     | 1288527 | 97.04      | 2.96       | 139240    | 97.28      | 2.72       | 75870 | 97.61      | 2.39       |
| UV light    | 1296788 | 98.41      | 1.59       | 140195    | 98.08      | 1.92       | 76434 | 97.06      | 2.94       |
| Neutral     | 1324073 | 99.71      | 0.29       | 142991    | 99.19      | 0.81       | 78240 | 99.35      | 0.65       |

Table.8: Degradation data of EMTC, DLTG and TNFA

# Photolytic Stability Study

For the photolytic stability study, EMTC 2000 $\mu$ g/mL, DLTG 500 $\mu$ g/mL and TNFA 250  $\mu$ g/mL solutions were exposed to UV-light by placing the solutions in UV cabinet for 1day or 200 Watt hours/m2 in photo stability chamber. The resulting solutions were combined in a 10 volumetric flask and made up to the mark with diluent to get 200 $\mu$ g/mL, 50 $\mu$ g/mL and 25  $\mu$ g/mL concentrations of EMTC, DLTG and TNFA respectively. From that 0.50  $\mu$ L of solution was infused in to an UPLC system and the resultant chromatograms were analysed for the stability of analytes. The findings were represented in Table 8

## and Fig. 10.

## Acid Degradation Studies

To 1 mL of each stock solution of EMTC, DLTG and TNFA, 1 mL of 2N Hydrochloric acid was added in to a 10 mL volumetric flask and refluxed at 60°C for 30 min. Further, the resulting solution was made up to the mark to get 200 $\mu$ g/mL, 50 $\mu$ g/mL and 25  $\mu$ g/mL concentrations of EMTC, DLTG and TNFA respectively. From that 0.50  $\mu$ L of solution was infused in to an UPLC system and the resultant chromatograms were analysed for the stability of analytes. The findings were represented in Table 8 and Fig. 10.

## **Neutral Degradation Studies**

To 1 mL of each stock solution of EMTC, DLTG and TNFA, 5 mL of water was added in to a 10 mL volumetric flask and kept for refluxing at 60°C for 1 h. Further, the resulting solution was made up to the mark to get  $200\mu$ g/mL,  $50\mu$ g/mL and  $25\mu$ g/mL concentrations of EMTC, DLTG and TNFA respectively. From that 0.50  $\mu$ L of solution was infused in to an UPLC system and the resultant chromatograms were analysed for the stability of analytes. The findings were represented in Table 8 and Fig. 10.

## Oxidation

To 1 mL of each stock solution of EMTC, DLTG and TNFA, 1 mL of 20% hydrogen peroxide (H2O2) were added in to a 10 mL volumetric flask and kept at 60°C for 30 min. Further, the resulting solution was made up to the mark to get  $200\mu g/mL$ ,  $50\mu g/mL$  and  $25\mu g/mL$  concentrations of EMTC, DLTG and TNFA respectively. From that 0.50  $\mu$ L of solution was infused in to an UPLC system and the resultant chromatograms were analysed for the stability of analytes. The findings were represented in Table 8 and Fig. 10.

## Dry Heat Degradation Studies

To a 10 mL volumetric flask add 1mL each stock solution of EMTC, DLTG and TNFA and monitored at 105°C for 1 h in an hot air oven to perform the dry heat stability study. Further, the resulting solution was made up to the mark to get  $200\mu g/mL$ ,  $50\mu g/mL$  and  $25\mu g/mL$  concentrations of EMTC, DLTG and TNFA respectively. From that 0.50  $\mu$ L of solution was infused in to an UPLC system and the resultant chromatograms were analysed for the stability of analytes. The findings were represented in Table 8 and Fig. 10.

#### CONCLUSION

A simple, accurate and precise method was developed for the simultaneous estimation of the EMTC, DLTG and TNFA in Tablet dosage form by RP-UPLC technique. Retention times of EMTC, DLTG and TNFA were found to be 1.328 min,1.765 min and 2.135 min respectively. Chromatographic elution was processed through a Std BEH C18 (50 x 2.1 mm, 1.8 $\mu$ ) reverse phase column and the mobile phase composition of buffer 0.1% orthophosphoric acid (2.2 pH) and acetonitrile in the ratio of 60:40 was pumped through a column at a flow rate of 1.0 mL/min. Repeatability of the method was determined in the form of %RSD and findings were 0.9, 0.6 and 1.0 for EMTC, DLTG and TNFA respectively. LOD, LOQ values obtained from regression equations of EMTC, DLTG and TNFA were 0.34, 1.03  $\mu$ g/mL, 0.36, 1.09  $\mu$ g/mL and 0.25, 0.76  $\mu$ g/mL respectively. Three analytes were subjected for acid, peroxide, photolytic, alkali, neutral and thermal degradation studies and the results shown that the percentage of degradation was found between 0.29% and 6.41%. Retention times and total run time of two drugs were decreased and the developed method was simple and economical. So, the developed method can be adopted in industries as a regular quality control test for the quantification of EMTC, DLTG and TNFA.

#### REFERENCES

- 1. Villani P, Regazzi MB, Castelli F, Viale P, Torti C, Seminari E,Maserati R,(1999). Pharmacokinetics of efavirenz (EFV) alone and in combination therapy with nelfinavir (NFV) in HIV-1 infected patients, Brazilian Journal of Clinical Pharmacology, 48(5): 712–715.
- 2. Julien Fonsart, Sentob Saragosti, Milad Taouk Gilles, Peytavin, Lane Bushman, Isabelle Charreau, Allan Hance, Lauriane Goldwirt, Stephane Morel, Fabrizio Mammano, Bendicte Loze, Catherine Capitant, Francois Clavel, Nadia Mahjoub, Laurence Meyer, Peter L Anderson, Constance Delaugerre, Jean-Michel Molina, (2017). Singledose pharmacokinetics and pharmacodynamics of oral tenofovir and emtricitabine in blood, saliva and rectal tissue: a sub-study of the ANRS IPERGAY trial, Journal of Antimicrobial Chemotherapy, 72 (2): 478–485.
- 3. Joseph M Custodio, Marshall Fordyce, William Garner, Mona Vimal, Kah Hiing J Ling, Brian P Kearney, Srinivasan Ramanathan, (2016). Pharmacokinetics and Safety of Tenofovir Alafenamide in HIV-uninfected Subjects with Severe Renal Impairment, Antimicrobial Agents and Chemotherapy; 60 (9): 5135-5140.

- 4. Venkatesan S, Kannappan N, (2014). Simultaneous spectrophotometric method for determination of emtricitabine and tenofovir disoproxil fumarate in three-component tablet formulation containing rilpivirine hydrochloride, International Scholarly Research Notices, 1-8.
- 5. Kiran Kumar V, Appala Raju N, (2009). Estimation of emtricitabine in tablet dosage form by RP-HPLC, Asian Journal of Chemistry, 21(8): 5979-5983
- 6. ICH: Q2 (R1), Validation of analytical procedures: text and methodology;2005.
- 7. ICH: Q2B. Harmonized Tripar tite Guideline, Validation of Analytical Procedure: Methodology, IFPMA, in: Proceedings of the International Conference on Harmonization, Geneva;1996.
- 8. Guguloth R, Madhukar A, Kannappan N, Ravinder A. (2016). Method development and validation of new RP-HPLC method for the determination of sofosbuvir tablet, J. Pharma Res. 5(7): 161-163.
- 9. Charde M S, Welankiwar A S, Chakole R D. (2014). Development of validated RP-HPLC method for the simultaneous estimation of atenolol and chlorthalidone in combine tablet dosage form. International Journal of Advances in Pharmaceutics. 3 (1):1-11.
- 10. de Mendoza AEH, Imbuluzqueta I, *et al.* (2011). Development and validation of ultra-high performance liquid chromatography-mass spectrometry method for LBH589 in mouse plasma and tissues. J Chromatogr B: Anal Technol Biomed Life Sci.. 879:3490–3466.
- 11. Madhavi S, Rani AP. (2018). Simultaneous reverse phase ultra- performance liquid chromatography method development and validation for estimation of Grazoprevir and Elbasvir. Asian J Pharm Clin Res. 11:100.
- 12. Ngwa G. (2010). Forced degradation as an integral part of HPLC stability-indicating method development. Drug delivery technology. 10(5):56-59.
- 13. Mule KL. (2017). Rapid analytical method for assay determination for prochlorperazine edisylate drug substances by ultra-performance liquid chromatography. Int J Curr Pharm Res. 9(4):118-122.
- 14. Kishore Kumar L Mule. (2017). Rapid analytical method for assay determination for prochlorperazineedisylate drug substances by Ultra performance liquid chromatography. Int J Curr Pharm Res;9:118-22.
- 15. Baki Sharon, Meruva Sathish Kumar, Marakatham S, Kanduri Valli Kumari. (2018). A New RP-UPLC method development and validation for the simultaneous estimation of ivacaftor and lumacaftor. J Global Trends Pharm Sci ;9:5730-7.
- 16. Madhavi S, Prameela Rani A. (2018). Simultaneous reverse phase ultraperformance liquid chromatography method development and validation for estimation of grazoprevir and elbasvir. Asian J Pharm Clin Res;11:100.
- 17. Ngwa G. (2010). Forced degradation studies as an integral part of HPLC stability indicating method development. Drug Delivery Technol;10:56-9.
- 18. Balaswami B, Ramana PV, Rao BS, Sanjeeva P. (2018). A new simple stability indicating RP-HPLC-PDA method for simultaneous estimation of triplicate mixture of sofosbuvir, voxilaprevir and velpatasvir in tablet dosage form. Res J Pharm Technol ;11:4147-56.

**Copyright:** © **2025 Author**. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.