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ABSTRACT 
For the past four decades, extensive research has been carried out for the development of the methods of protein 
structure prediction. Development of hybrid methods and novel algorithms including different parameters has 
contributed to a large extent for the progress of protein structure prediction. In spite of the development of several 
structure prediction methods with better accuracy, it is not still clear how the one-dimensional amino acid sequence of a 
protein codes for the three-dimensional structure. The high complex nature of sequence-structure relationship is due to 
the interplay between physics and evolution and hence the problem must be viewed from a physico-chemical perspective. 
Further, one of the most important factors influencing the ability to predict accurate models is the extent of structural 
conservation between target and template. Considering the above facts, we have made a retrospective analysis of the 
earlier CASP targets and their templates by using physico-chemical properties correlation coefficient of the amino acid 
residues which were utilized by Argos (1987) in his sensitive sequence comparison algorithm. For most of the targets and 
templates in all four structural classes, a reasonable correlation coefficient is observed for any one of the five properties. 
Also, the profile based alignment between target and template was better than the substitution matrix based alignment. 
The results discussed here point to the need for the development of novel algorithms by incorporating profile alignment 
and physico-chemical correlation coefficients to select the template or a fold from fold library during the comparative 
modeling or threading procedures.  
Keywords: Profile alignment; Physico-chemical properties; secondary structure prediction; CASP targets and templates; 
Protein Folding 
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INTRODUCTION 
The number of protein sequences in databases has increased in an exponential manner in the recent past 
decades due to the advances in genome sequencing technology. However, the majority of sequences are 
not provided with functional information because of the slow and expensive nature of the experimental 
procedures for structure determination. One way to tackle this problem is to compare the sequences with 
those of known protein structures available in Protein Data Bank [1]. The main concern of the structural 
biologists at present is to bridge the gap between sequence and structure knowledge, often termed as 
sequence-structure gap. It is the main factor driving the need for prediction of protein structure. 
If one tries to assign two dihedrals with two possible positions for each dihedral for a given protein 
sequence with 100 residues, there will be 2200 conformations. Since the conformational space of even a 
very small protein is considerably large, the process of finding the correct one by a random search is not 
possible. However according to Anfinsen, proteins can fold to their native structures spontaneously 
without the intervention of any agent and therefore the protein fold is coded in the amino acid sequence 
itself [2]. Protein structure prediction is therefore a problem of much scientific interest and it is not still 
clear as to how structure is encoded in sequence. 
Computer methods for protein analysis address this problem since they study the relationship between 
the amino acids sequence and structure. Since proteins have structural features which define functional 
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similarities, the need for structure estimation methods is high. Developments of novel algorithms 
including different parameters have contributed a large extent for the progress of protein structure 
prediction. Due to significant developments in the structure prediction field, processing and consequent 
analysis of predicted structures has become as a complex procedure [3].  
Sequence similarity search is a crucial step in analyzing newly determined sequences. However, 
sequences of homologous proteins can diverge and there are most sensitive methods available to find the 
homologues. Modern secondary structure prediction methods utilize evolutionary information derived 
from multiple sequence alignment to provide better insights into the positional conservation of physico-
chemical features such as hydrophobicity and hints at position of loops in the regions of insertions and 
deletions corresponding to gaps in the alignment [4]. The secondary structure prediction algorithm with 
different types of multiple sequence alignment profiles derived from the homologous sequences is shown 
to provide better accuracy than other alignment methods based on substitution matrices [5]. There are 
several consensus meta-servers such as the NPS web server [6] and JPred server [7] that returns 
predictions from several secondary structure prediction methods and provide a consensus secondary 
structure using a neural network, thereby improving the average accuracy of prediction. In general, most 
of the secondary structure prediction methods predict the secondary structures of all-alpha proteins 
more accurately than other classes [8]. 
In our earlier work, we used a structural descriptor known as Long Range Order (LRO) [9] to characterize 
the native fold of the homologous family of proteins [10]. In a recent work, we have shown that the 
presence of unusual combination of amino acid residues in CASP8 targets (T0498 and T0499) at the 
secondary structural element positions may lead the secondary structure prediction methods not to 
predict the structural states accurately [11]. Further, we have shown that the influence of certain 
biophysical properties such as hydrophobic residues, hydrophilic residues, difference in secondary 
structural propensities of surrounding residues and difference in cooperative long range interactions in 
identical octapeptides adopting different conformations [12].   
CASP is a community wide structure prediction experiment that runs every two years to assess the 
quality of structure prediction methods developed by various research groups. The CASP experiment 
challenges prediction teams to submit structural models for a set of sequences whose structures have 
been recently solved experimentally but have not yet been published. From the series of CASP 
experiments, it is known that a correct protein fold prediction can be obtained by one method but not by 
the others [13]. It has also been observed that no method can reliably distinguish between weak hits 
(beyond a threshold score) and wrong hits and that often a correct model is found among the top hits of 
the method. From such and other observations many human expert predictors realized that in order to 
produce better predictions, the results from a number of independent methods need to be analyzed. 
Another successful practice observed in previous CASP was to build hybrid models from fragments. 
Automated meta-predictors using this approach have also been developed. 
There are several lessons from previous CASP experiments such as the need for an analytical approach to 
find that what is the success and failure behind a prediction method and to identify which prediction 
method has greater accuracy and what are all the significant parameters which made the method to 
predict the structure successfully. Pair wise sequence identity between target and template is not an 
effective parameter for describing the difficulty of a target. One of the most important factors influencing 
the ability to predict accurate models is the extent of structural conservation between target and 
template. Hence in the present work, we have made a retrospective analysis of previous CASP targets and 
their templates by using alignment programs and five physico-chemical properties used by Argos [14] in 
sequence comparison algorithm.  
 
MATERIAL AND METHODS 
DATA SET 
The targets released in CASP competitions from CASP1 to CASP8 form the source of our present study. 
The target sequence was subjected to BLAST search15 against PDB database [1] and the resulting hit with 
100% identity PDB ID was assigned to the particular target. From the available targets, we have grouped 
the 66 fold recognition/comparative modelling category targets for our analysis. We have also obtained 
the templates for 66 targets grouped according to their structural class which is used to recognize the fold 
from the Prediction center website. Among several templates for a particular target, the template which 
gave good model has been considered. 
ALIGNMENT OF TARGETS AND TEMPLATES  
The targets and templates were subjected to alignment by using STRETCHER [16] and Fold and Function 
Alignment Server (FFAS) [17]. Stretcher calculates an optimal global alignment between target and 
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template by using a modification of the classic dynamic programming algorithm which uses linear space 
where as FFAS server utilizes information present in sequences of homologous proteins and performs 
profile-profile alignment. Aligned regions without gaps were considered for further computations. 
COMPUTATION OF DAYHOFF/BLOSUM SCORE 
To evaluate the extent of homology between CASP targets and their corresponding templates, a classical 
measure is to compute scores based on substitution matrices such as Dayhoff's PAM 250 mutation matrix 
[18]. This matrix expresses the relative weight with which each amino acid is replaced by another amino 
acid. Amino acids replace each other depending on their chemical similarity; for example a charged 
residue such as an aspartic acid will be replaced by glutamic acid with a similar charge and so on. We 
have made an analysis of aligned sequence of 66 pairs of targets and templates by using the BLOSUM 62 
mutation data matrix [19]. When the pair of target and template sequence was compared, for each 
position the BLOSUM score was obtained and summed up. The pair with highest score will be closely 
related to each other. 
COMPUTATION OF PHYSICO-CHEMICAL CORRELATION COEFFICIENT 
We have made use of five kinds of physico-chemical properties of amino acid residues namely 
surrounding hydrophobicity [20], bulkiness [21], turn preference [22], antiparallel strand preference [23] 
and refractivity index [21] which were utilized by Argos [14] in his sequence comparison algorithm. The 
original values provided by different authors were normalized to a value of 1.0 and made positive by the 
addition of the most negative value [24]. These selective parameters according to Argos [14] are highly 
sensitive for structurally aligned amino acid residues. Hence we computed cross correlation coefficient by 
substituting sequence of numerical values which represents any one of the above physical or chemical 
property in the place of amino acid sequence of target and template sequences. Calculations of average 
correlation coefficients using a set of properties were found to improve the signal noise ratio and in our 
calculation average cross correlation coefficient were also computed [25]. 
A quantitative expression of homology between two amino acid sequences X and Y is obtained by 
computation of cross correlation coefficient described below. The coefficient C( j ) at the jth residue of the 
sequence Y is expressed by comparing a sequence of N residues long, which starts at the uth  residue and 
ends at the (u+N)th residue in the sequence X with the sequence Y from the jth  residue to the (u+N)th 
residue. 
            N 
∑  (X( u + i - 1) - <X>) (Y( j + i - 1) - <Y>) 
            i=1 
C( j ) =           ---------------------------------------------------------------------------- 
    N          N  
 [{∑  (X( u + i - 1) - <X>)2 } {∑  (Y( j + i - 1) - <<Y>>2)}]1/2 
   i=1         i=1 
where 
 1     N     1      N 
<X> = --- ( ∑   X( u + i – 1)) ,           <Y> = ---- ( ∑  Y( j + i – 1)) 
 N   i=1     N    i=1 
Here X (u + i – 1) is the index value of an amino acid at the position ( u + i – 1) in X and Y( j + i – 1) at the 
position ( j + i – 1) in Y.  The whole computation process have been carried out and automated by using an 
in house FORTRAN program in SUN ULTRA 40 M2 workstation. 
 
RESULTS AND DISCUSSION 
TARGET – TEMPLATE RELATIONSHIP: 
Alignment of target and template remains a complex problem in the comparative modeling category and 
more importantly the quality of the alignments does not correlate well with the level of sequence identity 
approaching 40%. For the all alpha targets and templates, the BLOSUM and DAYHOFF scores are looking 
sensible. This is because of the less structural complexity of proteins in this structural class. But in case of 
all beta, alpha+beta and alpha/beta class targets and templates, the BLOSUM and DAYHOFF score are not 
evenly distributed. For the targets, T0130, T0468, T0414, T0497, T0152, T0138, T0135, T0168, T0189, 
T0471, T0482, T0466, T0462, T0474, T0473, T0421, T0413, T0420, T0400, T0435, T0479 and T0502 
have negative scores which are given in Table 1 - 4. This clearly indicates that the scores or alignment 
based on the substitution matrices do not provide an optimal solution when the sequence identity is less 
than 40%. Improvements in comparative modeling could occur as the database of available targets 
continues to grow. 
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From our results of target-template alignment, FFAS server works pretty good than the other alignment 
algorithms based on the substitution matrices. The difference in percent identity between an optimal 
alignment (STRETCHER) and Profile-Profile alignment (FFAS) is given in Table 1 – 4. For example, the 
target T0177 has 28 identities out of 249 residues in the STRETCHER alignment where as it has 74 
identities out of 240 residues in the profile based FFAS alignment. It has been pointed out earlier that 
there is a marked difference in residue identity/percent identity between two various alignments 
program and in the case of CASP targets and templates profile based alignment works much better than 
others [26]. 
The final quality of the model depends upon the selection of correct template which is someway related to 
the target. Hence we made a systematic analysis to explore the target – template relationship by using five 
important physico-chemical properties of the amino acid residues used by Argos. Since the sequences of 
homologous proteins can diverge beyond the point where their relationship cannot be recognized by pair 
wise sequence comparisons, the results suggest that the relationship between physico-chemical 
properties of amino acid residues between target and template is very crucial while selecting template for 
a target with very low sequence identity falling under comparative modeling category. 
The physico-chemical correlation coefficients between targets and templates for each property are given 
in Table 1 - 4. In the case of all alpha targets and templates, the hydrophobicity and anti parallel turn 
preference property seem to be correlated well. This may be due to the similar packing angle preferences 
of helix-helix interactions [27] where as in the case of all beta targets and templates, the properties such 
as turn preference, bulkiness and anti parallel turn preference show sensible correlation coefficient than 
the other two properties. The abundance of beta turns in all beta proteins is a major reason for 
conservation of turn preference property which is reflected in the correlation coefficient between target 
and template.  
The physical properties such as hydrophobicity and anti parallel turn preference were much conserved 
which is clearly reflected in the correlation coefficient between targets and templates of alpha+beta and 
alpha/beta classes. Sensible correlation of the bulkiness property was found between targets and 
templates of mixed structural class in the CASP experiment. This is due to the vital role of bulk property of 
an amino acid residue in packing organization of secondary structural elements in mixed class of proteins 
[28]. Interestingly, it is noted that very poor correlation coefficient compared to other properties was 
found for the refractive index property. For most of the targets and templates in all three structural 
classes, a reasonable correlation coefficient is observed for any one of the five properties.  
In previous CASP experiments it has been demonstrated that predictors are rarely able to predict models 
that are closer to the target structure than the structure of the closest template [29]. The best performing 
groups used the same techniques with similar success as in previous years. The top three groups 
considered a range of templates and alignments from a range of sources before proceeding with the 
modeling step, though all did develop some new techniques to improve their predictions [30]. Sensitive 
methods such as physico-chemical correlation coefficient may be invoked to detect that similarity. 
Considering the above facts, we propose that profile based alignment and physico-chemical correlation 
coefficient may serve as powerful tools to select the template in order to model the structure for the 
targets in both comparative modeling and fold recognition category. 

TABLE 1: Target – Template Relationship in all-α structural Class 
All Alpha Targets 

   STRETCHER FFAS        

S. No 

Target 

Tem
plate 

%
 ID

 

Identities 

%
 ID

 

Identities 

DAYH
OFF 

BLOSUM
 

H
ydrophobicity 

Turn Preference 

Bulkiness 

Refractive Index 

Anti Parallel turn 
Preference 

1 T0406 2QNL 6.60% 11(167) 14.00% 24(161) 20 47 0.37 0.33 0.16 0.14 0.25 
2 T0456 3BHY 4.80% 14(291) 36.00% 100(275) 452 501 0.70 0.64 0.61 0.49 0.65 
3 T0459 1LJ9 4.90% 7(144) 22.00% 19(86) 21 57 0.42 0.42 0.45 0.20 0.58 

4 T0481 2F22 5.80% 9(154) 18.00% 28(149) 25 62 0.39 0.23 0.28 0.17 0.30 
5 T0498 2J5Y 6.60% 4(61) 53.00% 24(45) 96 96 0.71 0.62 0.69 0.44 0.68 
6 T9913 256B 5.60% 6(107) No Significant Profile Alignment 
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TABLE 2: Target – Template relationship in all-Βeta Structural Class 
All Beta Targets 
   STRETCHER FFAS        

S. No Target 

Tem
plate 

%
 ID

 

Identities 

%
 ID

 

Identities 

DAYH
OFF 

BLOSUM
 

H
ydrophobicity 

Turn Preference 

Bulkiness 

Refractive Index 

Anti Parallel 
turn Preference 

1 T0130 1FA0 2.40% 13(537) 11.00% 12(104) -32 -1 0.38 0.29 0.37 0.17 0.26 
2 T0137 1PMP 25.60% 34(133) 42.00% 56(131) 264 280 0.60 0.68 0.61 0.59 0.66 
3 T0190 1BZ8 7.10% 9(126) 29.00% 34(116) 113 134 0.55 0.43 0.52 0.51 0.57 
4 T0392 2OCS 13.80% 15(109) 25.00% 22(87) 24 73 0.52 0.62 0.39 0.26 0.59 
5 T0397 1X82 6.80% 13(190) 20.00% 10(50) 24 4 0.05 0.33 0.49 0.31 0.17 

6 T0402 2I02 8.80% 13(148) 19.00% 26(134) 66 97 0.50 0.37 0.49 0.37 0.41 
7 T0409 1H9M 8.30% 12(145) 21.00% 14(64) 7 31 0.23 0.41 0.35 0.31 0.34 
8 T0412 1YSQ 6.20% 12(193) 18.00% 33(180) 31 46 0.30 0.32 0.41 0.17 0.33 
9 T0414 2OA2 4.70% 7(148) 10.00% 14(132) -29 -14 0.25 0.27 0.28 0.13 0.27 
10 T0426 2NMX 36.40% 103(283) 59.00% 155(260) 762 866 0.77 0.74 0.82 0.81 0.78 

11 T0468 1JB7 2.40% 12(495) 12.00% 13(103) 30 -6 0.25 0.14 0.16 0.20 0.33 
12 T0488 2FE5 6.30% 6(95) 30.00% 29(94) 90 127 0.67 0.60 0.57 0.36 0.60 
13 T0497 2I51 6.20% 12(195) 11.00% 19(164) -11 -47 0.19 0.21 0.23 0.24 0.23 
14 T9903 1AAJ 5.70% 6(105) 20.00% 3(15) 28 10 0.41 0.20 0.05 0.60 0.21 
15 T9912 2MCM 10.70% 12(112) No Significant Profile Alignment 

16 T0181 1FCP 1.60% 11(705) No Significant Profile Alignment 
17 T0415 1C8C 3.70% 4(109) No Significant Profile Alignment 

 
TABLE 3: Target – template relationship in α+β structural class 

Alpha + Beta  
   STRETCHER FFAS        

S. No 

Target 

Tem
plate  

%
 ID  

Identities 

%
 ID  

Identities 

DAYH
OFF 

BLOSUM
 

H
ydrophobicity 

Turn Preference 

Bulkiness 

Refractive Index 

Anti 
Parallel 

turn Preference 

1 T0135 1IPB 4.10% 9(217) 8.00% 9(103) -37 -5 0.37 0.25 0.24 0.16 0.42 
2 T0150 1CK2 19.80% 21(106) 33.00% 32(96) 97 139 0.52 0.45 0.62 0.48 0.53 
3 T0152 1B6B 7.10% 15(210) 13.00% 23(171) -34 -51 0.31 0.27 0.25 0.07 0.20 
4 T0169 1QSN 4.30% 7(162) 14.00% 24(163) 5 47 0.41 0.37 0.44 0.26 0.44 

5 T0192 1QSO 7.60% 13(171) 15.00% 25(160) 58 38 0.34 0.31 0.33 0.31 0.33 
6 T0404 2J9C 11.80% 14(119) 18.00% 19(104) 29 31 0.25 0.32 0.40 0.21 0.34 
7 T0451 1NWW 8.70% 13(149) 14.00% 19(133) 54 7 0.24 0.05 0.22 0.21 0.30 
8 T0453 2R2Z 9.50% 9(95) 25.00% 24(93) 78 104 0.51 0.54 0.55 0.36 0.61 
9 T0499 2IGD 47.50% 29(61) 62.00% 35(56) 161 167 0.76 0.60 0.56 0.65 0.77 

10 T9901 10FV 5.80% 10(171) No Significant Profile Alignment 
11 T0148 1AB8 6.40% 14(220) No Significant Profile Alignment 
12 T0472 3BRC 5.10% 8(156) No Significant Profile Alignment 
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TABLE 4: Target – template relationship in α/β structural class 
Alpha/Beta 

   STRETCHER FFAS        

S. No Target 

Tem
plate 

%
 ID

 

Identities 

%
 ID

 

Identities 

DAYH
OFF 

BLOSUM
 

H
ydrophobicity 

Turn Preference 

Bulkiness 

Refractive Index 

Anti Parallel 
turn Preference 

1 T0138 1E6M 3.00% 4(135) 8.00% 11(128) -27 -9 0.40 0.37 0.33 0.08 0.35 
2 T0167 1JEO 20.60% 39(189) 33.00% 63(188) 214 304 0.61 0.61 0.59 0.49 0.63 

3 T0168 1K56 5.80% 19(327) 8.00% 23(264) -63 -65 0.24 0.19 0.20 0.12 0.16 
4 T0177 1LFP 11.20% 28(249) 30.00% 74(240) 147 306 0.55 0.48 0.54 0.37 0.54 
5 T0178 1JCJ 13.50% 35(260) 22.00% 56(244) 118 212 0.50 0.47 0.48 0.33 0.50 
6 T0188 1EO1 12.00% 15(125) 27.00% 34(125) 90 126 0.52 0.45 0.48 0.41 0.54 

7 T0189 1JXI 8.20% 26(319) 10.00% 29(268) -41 -41 0.19 0.13 0.35 0.20 0.24 
8 T0388 2F8A 10.60% 22(208) 29.00% 57(193) 239 253 0.50 0.41 0.55 0.48 0.57 
9 T0389 1GMX 4.60% 7(153) 14.00% 20(134) -30 52 0.37 0.42 0.47 0.38 0.41 
10 T0400 1QST 3.70% 6(162) 10.00% 17(162) -44 -5 0.39 0.30 0.37 0.06 0.24 
11 T0411 1GMX 8.50% 12(141) 13.00% 16(120) 39 45 0.50 0.45 0.39 0.27 0.49 

12 T0413 1GKL 6.60% 20(304) 10.00% 33(312) -2 -45 0.27 0.21 0.20 0.21 0.20 
13 T0420 2PRV 6.30% 12(189) 12.00% 12(93) 1 -10 0.42 0.37 0.33 0.02 0.45 
14 T0421 1NN5 6.30% 19(300) 8.00% 20(228) -44 -31 0.31 0.30 0.29 0.18 0.32 
15 T0432 2RI7 3.40% 6(174) 24.00% 27(110) 73 89 0.45 0.58 0.25 0.17 0.45 
16 T0433 1G0O 11.00% 31(283) 17.00% 42(246) 88 137 0.38 0.33 0.47 0.29 0.41 

17 T0435 1ZKK 4.80% 8(167) 10.00% 16(148) -67 -42 0.24 0.17 0.28 0.19 0.33 
18 T0461 1P60 11.10% 21(189) 20.00% 35(167) 83 120 0.46 0.35 0.42 0.25 0.46 
19 T0462 3B79 3.20% 5(154) 12.00% 5(40) -5 5 0.39 0.39 0.23 -0.13 0.41 
20 T0466 1X54 3.00% 13(434) 6.00% 6(91) -21 -24 0.45 0.30 0.24 0.02 0.37 
21 T0471 1F38 6.20% 12(192) 13.00% 15(112) -24 19 0.34 0.36 0.36 0.13 0.46 

22 T0473 2E65 3.80% 9(235) 12.00% 8(64) 3 -5 0.35 0.29 0.39 0.29 0.24 
23 T0474 2GPE 5.00% 4(80) 10.00% 5(46) -5 3 0.45 0.37 0.29 0.16 0.38 
24 T0479 1VH5 10.10% 15(148) 20.00% 26(127) -14 49 0.35 0.34 0.24 0.20 0.32 
25 T0482 7AHL 3.10% 9(293) 12.00% 14(111) -14 0 0.24 0.22 0.31 0.29 0.44 
26 T0486 2J5I 7.50% 22(292) 21.00% 59(271) 87 174 0.39 0.39 0.50 0.40 0.36 

27 T0492 2DTR 3.50% 8(226) 18.00% 11(60) 9 14 0.40 0.53 0.50 0.29 0.34 
28 T0502 1XRG 3.70% 11(294) 15.00% 17(107) -5 -2 0.14 0.29 0.22 0.04 0.36 
29 T0157 1L6Y 4.30% 14(323) No Significant Profile Alignment 
30 T0469 1ZR6 2.00% 10(503) No Significant Profile Alignment 

31 T0393 2F1K 6.40% 18(281) No Significant Profile Alignment 
Target – Target ID 
Template – Template PDB ID 
STRETCHER - STRETCHER Alignment results 
FFAS - FFAS Alignment results 
DAYHOFF – Dayhoff score between target and template 
BLOSUM – BLOSUM Dayhoff score between target and template 
Hydrophobicity, Turn Preference, Bulkiness, Refractive Index and anti parallel turn preference – Correlation 
coefficient of five properties between target and template. 
 
Without investigating protein molecular function and interactions, protein sequences are not valuable. In 
order to investigate molecular function and interactions, structure elucidations based on computational 
methods are the only possible alternative to the experimental investigation of the protein structure space. 
Assessing the reliability of structure prediction methods requires more attention by comparing 
computational models with the corresponding experimental structures. Classical physics based methods 
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can give a reasonable estimate of the similarity between a target sequence and the corresponding 
experimental template structure when no relationship was detected between them by using several 
statistical measures [31].  
 
CONCLUSION 
Identifying the best structural template for a target is still a big challenge. But from the extent of 
structural conservation between target and template structures, the quality of models produced by 
comparative modeling is determined by various factors, such as the ability to deduce the correct 
structural alignment with the template protein and the accuracy of the modeling step. Sensible physico-
chemical correlation coefficients have been found between target and template. This allows us to propose 
that alternate sophisticated methods such as physico-chemical correlation coefficient may be invoked to 
detect the similarity between targets and templates. Hence, we propose from our analysis that profile-
profile alignment and physico-chemical correlation coefficient between target sequence and template 
structure may serve as a powerful tool to select the template in order to model the structure for the 
targets in both comparative modeling and fold recognition category. 
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