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ABSTRACT 
XRCC3 (X-ray repair cross-complementing protein 3) is a critical human protein functions in maintaining genomic 
integrity by repairing DNA. Specifically, within the homologous recombination repair (HRR) pathway, this is vital for 
fixing double-strand breaks in DNA. Mutations in XRCC3 can hinder this repair process, potentially cause genomic 
instability and increase the risk of cancer development. In XRCC3 protein T241M (Threonine to Methionine at position 
241) polymorphism is a prevalent genetic variation linked to a higher susceptibility to several cancers. Functional 
studies indicate that this mutation might impair DNA repair efficiency, particularly in homologous recombination repair, 
potentially resulting in increased genomic instability and greater vulnerability to mutations during cell division. 
Consequently, this may reduce the proteins effectiveness in repairing DNA double-strand breaks. In this probe, we are 
leveraging sophisticated computational algorithms to precisely target XRCC3 mutations and elucidate potential 
inhibitory molecules. 
Keywords: XRCC3 (X-ray repair Cross-Complementing protein 3), HRR (Homologous Recombination Repair), DNA 
double strand break, Computational algorithm 
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INTRODUCTION  
Breast cancer continues to be a dominant and serious health concern for women around the world. It 
arises from the uncontrolled growth of cells within the breast tissue and can vary widely in terms of 
molecular subtype, aggressiveness, and response to treatment. In recent years, its incidence has increased 
significantly have improved survival rates, the underlying causes of breast cancer remain complex and 
multifunctional-encompassing genetic, hormonal, environmental, and lifestyle- related factors. Ongoing 
research continues to explore the biological mechanisms of tumor development and progression, aiming 
to enhance prevention strategies, diagnostic accuracy, and personalized treatments. 
Genetic variation and environmental factors together contribute to cancer development. DNA repair 
genes play a key role in maintain genomic stability by fixing damage from sources like UV radiation or 
internal mutagens [10-12]. Faulty repair of double-strand breaks (DSBs) leads to genome instability, a 
key feature of cancer [13]. Double strand Breaks are fixed by twofold pathways: Homologous DNA 
recombination (HDR) and non - homologous end joining (NHEJ) [14,15]. In breast cancer cell, HR activity 
is elevated, while NHEJ remains the primary repair route in both normal and cancerous cells, with similar 
efficiency. RAD51 family [16,17], a critical protein family in HR, is essential for accurate DNA repair and 
genome maintenance. 
Biochemical Pathway 
XRCC3 (X-ray repair cross-complementing protein 3) is a member of the RAD51 paralog family [18], 
which plays crucial role in the homologous recombination (HR) pathway of DNA double-strand break 
repair (Figure 1) [1,2]. When a DNA break occurs, HR is activated during the S and G2 phases of the cell 
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cycle, where a sister chromatid is available as a template. The process begins with DNA end resection, 
producing single-stranded DNA overhangs. These overhangs are coated with replication protein A (RPA), 
which is later replaced by RAD51, assisted by XRCC3 and other paralogs. XRCC3 stabilizes the RAD51 
nucleoprotein filament, promoting strand invasion and homology search. This leads to the formation of a 
displacement loop (D-loop), allowing DNA synthesis to restore the damaged region using the sister 
chromatid as a guide [3-9].  
In breast cancer, XRCC3 plays a dual role [19]. On one hand, its function in maintaining genome stability 
protects cell from malignant transformation on the other hand dysregulation or polymorphism in XRCC3 
can compromise DNA repair efficiency, leading to the accumulation of mutations and promoting tumor 
progression. Overexpression or altered activity of XRCC3 has been observed in breast cancer subtypes, 
potentially contributing to resistance against DNA-damaging therapies. Thus, XRCC3 serves not only as a 
guardian of genomic integrity but also as a potential biomarker for cancer susceptibility and treatment 
response. 

 
Figure 1. XRCC3 Protein Regular and Irregular Pathway 

MATERIAL AND METHODS 
In recent years, computational chemistry techniques have been increasingly utilized to address the 
shortcomings of conventional drug discovery approaches. To date, a completely resolved three-
dimensional (3D) structure of the XRCC3 protein has not been determined through either experimental 
analysis or theoretical modelling. Therefore, the present study focuses on constructing and validating a 
3D structural model of XRCC3 using in silico approaches [20]. The amino acid sequence of XRCC3 in 
FASTA format was obtained from the Universal Protein Resource (UniProt) [21]. Proteins exhibiting 
similar secondary structures, domain arrangements, and folding patterns were selected as templates 
using the Jpred4, and PHYRE2 tools, respectively [21-23]. The degree of sequence-to-structure 
conservation between XRCC3 and templates is quantitatively assessed using the statistical metric known 
as the E-value. 
Protein sequence alignment and 3D model construction 
The amino acid sequence of the target protein was aligned with template sequences through CLUSTALW 
[24]. A three-dimensional structure of the XRCC3 protein was then constructed using MODELLER, which 
employs the CHARMM22 force field [25]. The model exhibiting the lowest objective function score from 
MODELLER was chosen for subsequent optimization studies. 
Energy minimization and Validation  
The quality of the generated 3D protein model was refined through loop modeling and energy 
minimization was conducted with the Impref Module from the Schrodinger suite [26], employing a cutoff 
of 0.3 Å. This process utilized the OPLS 2004 (Optimized Potential for Liquid Simulation) force field [27], 
which helps preserve the protein’s native carbon backbone structure. During this step, the backbone 
atoms were kept fixed while side chains were allowed to adjust, enabling the structure to reach a low-
energy conformation without altering the Cα atom coordinates. 
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To further enhance model stability, molecular dynamics simulations were performed using the Protein 
Preparation Wizard in the Schrodinger Suite applied the OPLS-AA force field (all-atom variant) to 
optimize the 3D structural quality [28]. 
The structural integrity and validity of the homology model was assessed using PROCHECK [29], ProSA 
[30], and VERIFY_3D servers [31]. Root means square deviation (RMSD) analysis was conducted between 
the template structure and the target protein to evaluate the accuracy of the homology model for XRCC3. 
The conformation exhibiting the highest stability was selected for further examination, including its 
secondary structure elements and potential active site regions. 
Active site identification by computational approach  
Accurate identification of a protein’s active site is fundamental for elucidating its precise biological role 
and plays a critical role in rational drug design and discovery. Advanced computational approaches are 
utilized to predict potential ligand-binding pockets within the protein structure. Tools such as CASTp and 
the SiteMap module within the Schrodinger suite are employed to detect hydrophobic cavities and 
topologically favorable binding regions [28,32,33]. 
Virtual Screening and Molecular Docking 
A receptor grid was generated at the predicted binding domain of the XRCC3 protein using the Glide 
Module form the Schrodinger suite to facilitate virtual screening and molecular docking analyses. Ligand 
molecules were curated form established structural databases and prepared for docking using LigPrep, 
which optimizes their stereochemistry, ionization states, and ring conformations to ensure accurate 
binding predictions 33. The virtual screening workflow in Glide was executed sequentially using HTVS 
(High Throughput Virtual Screening), SP (Standard Precision), and XP (Extra Precision) docking 
protocols. Docked ligands were subsequently ranked based on their Glide Scores [34,35,36], which reflect 
predicted binding affinity. 
ADMET Properties 
Comprehensive evaluation of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) 
properties is an essential component of early-phase drug development, influencing both clinical trial 
viability and eventual market success of lead compounds. Ligand molecules identified through virtual 
screening and docking-particularly those demonstrating significant binding affinity toward XRCC3 were 
subjected to ADME profiling using the QikProp module within the Schrodinger suite. To further assess 
toxicity and synthetic accessibility, Pro Tox 3.0 web platform was employed [37-40]. Ligands exhibiting 
favorable ADME and toxicity profiles were shortlisted as promising therapeutic candidates for Breast 
cancer. 
 
RESULTS AND DISCUSSION 
Three-dimensional conformational assessment of the XRCC3 protein 
Acquisition of the amino acid sequence data and identification of structural template  
The UniProt server, an integral resource in bioinformatics, provides a curated protein sequence and 
annotation database that supports a wide range of biological research. It combines data from Swiss-Prot, 
TrEMBL, and PIR Databases, offering comprehensive information on protein sequences, functional 
annotations, structural features, and taxonomy UniProt simplifies protein searches by enabling query-
based retrieval and provides downloadable FASTA sequences essential for downstream analysis.  
In this study, the UniProt server [21] was employed to retrieve protein sequences for XRCC3 Protein, 
which were further analyzed for functional annotations and structural insights. These sequences were 
critical in identifying conserved regions and active sites for homology modeling. By using accession 
numbers or sequence based queries, the server ensured accurate and reproducible data, contribution 
significantly to our computational workflow. 
Template Selection 
The BLAST (Basic Local Alignment Search Tool) server was employed to identify a suitable structural 
template for XRCC3, a protein involved in DNA repairing pathway.  Using the BLASTP algorithm, the 
search prioritized templates with high sequence identity, low E-value (< 0.001), and significant query 
coverage to ensure structural accuracy and evolutionary relevance. Among the results, the template 
8FAZ_B was selected as it exhibited strong homology to XRCC3 protein. This selected template served as 
the foundation for subsequent 3D modeling and structural analysis, highlighting the BLAST server’s 
utility in homology-based structural predictions. 
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Table 1: Template selection of XRCC3 Protein 
S. NO. Template Search Tool Template identified % Identity E-value/ 

% Confidence 
1 PSI- BLAST 8FAZ_B 29.14 2×e-22 
2 Jpred4 8FAZ_B 82.00 5×e-21 
3 PHYRE2 8FAZ_B 29.00 100% 

 
The Jpred4 tool detects template proteins that share similar secondary structures by utilizing multiple 
sequence alignment profiles. It applies the JNet algorithm to predict the most likely secondary structure 
components of proteins, including α-helices, β-sheets, and loops. 
To predict the 3D structure of the target protein, the amino acid sequence in FASTA format submitted to 
the Phyre2 web server (Kelley et al., 2015. The sequence was analyzed using Hidden Markov Model 
(HMM) - based alignment, comparing it with structural templates in the Protein Data Bank (PDB). 
Template selection was based on sequence identity, coverage, and confidence score. After selecting the 
best structural template, homology modelling was performed to generate a predicted 3D structure of the 
protein. 
Sequence alignment and Structural Validation of XRCC3 protein 
The XRCC3 protein sequence was reliably aligned with evolutionarily related template protein sequences, 
providing a strong foundation for constructing an accurate 3D structure. The FASTA sequence of XRCC3, 
along with the chosen template 8FAZ_B and their atomic coordinates (FIGURE 2), was input into 
MODELLER to build its three-dimensional model. A total of 50 models were generated, and the one with 
the lowest objective function value was selected for further refinement and optimization studies. 
 

 
Figure 2. Alignment of XRCC3 protein with template sequence 8FAZ_B 

Figure 2 shows the sequence alignment of the XRCC3 protein with its template 8FAZ_B sequence, which 
was CLUSTALW and visualized through Discovery Studio v24.1.0. In the alignment visualization, 
conserved residues are highlighted in dark green, strongly similar residues in light blue, and weakly 
similar residues in white, illustrating the degree of evolutionary conservation across the aligned 
sequence. 
The generated 3D model was further refined using structural validation tools such as ProSA and Verify 
3D. The predicted structure is valuable for protein ligand-docking, functional studies, and discovery 
applications.  

 
Model Validation  
The stereo chemical integrity of the XRCC3 protein model was evaluated using the Ramachandran plot 
(Figure 3) [41] [42] [43], which revealed that 90.0% of the residues reside within energetically favorable 
regions. Structural validation of amino acid compatibility in the three-dimensional model was conducted 
using the VERIFY_3D tool [37], which assesses the correlation between the 1D amino acid sequence and 
its 3D environment. Results indicated that 90.0% of the 346 residues achieved a 3D-1D score exceeding 
0.2, confirming acceptable model quality. Further evaluation using the ProSA-web server [37] (Figure 4 
and 5) supported the structural reliability by benchmarking the model against proteins of similar size in 
the Protein Data Bank (PDB), assessing both global and local quality. 
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Figure 3: Ramachandran contour plot of the XRCC3 protein structure to assess the stereochemical 

quality 
 
The Ramachandran plot illustrated in Figure 3 indicates that approximately 91% of the XRCC3 protein 
residues occupy energetically favorable regions. The high percentage suggests excellent stereo chemical 
quality. Protein models exhibiting over 90% of residues within the most favored regions are generally 
considered structurally stable.  
 

 
Figure 4: Overall model quality assessment of the XRCC3 protein 

Figure 4 presents the ProSA evaluation graph for the XRCC3 protein model, highlighting its Z-score, which 
serves as a assessing the structural integrity of the predicted model. The obtained Z-score of -6.39 falls 
within the range typically observed for native protein structures of comparable size in the Protein Data 
Bank (PDB), thereby indicating a high degree of reliability and similarity in terms of overall 3D structural 
quality. 
The overall Z-score of the XRCC3 protein model, calculated as -6.39 (Figure 4) falls within the acceptable 
range observed for experimentally determined structures of comparable size resolved by X-ray 
crystallography (light blue) and NMR spectroscopy (dark blue). This score reflects a high-quality model 
with structural integrity. Additionally, the ProSA energy plot (Figure 5) evaluates the local structural 
quality using knowledge-based energy calculations, illustrating energy variations across the sequence 
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with two smoothing window size (10 and 40 residues), highlighting regions of potential instability or 
deviation [37]. 
 

 
Figure 5: Local model quality assessment of the XRCC3 protein 

 
Figure 5 illustrates the local quality assessment of the XRCC3 protein structure, based on a knowledge-
based energy profile. The energy plot evaluates individual amino acid residues using two window sizes- 
10 residues (light green) and 40 residues (dark green). The majority of the energy values lie below the 
baseline, indicating a favorable local structural quality and suggesting that most region of the protein 
adopt energetically stable conformations. Figure 6 shows the ribbon model of the XRCC3 protein 
comprising of 17 α helices, 15 β sheets and 3 β hairpins. 

 
Figure 6: Computationally modeled XRCC3 protein structure 

e) Structural profiling of alpha-helices and beta-sheets 
The 3D model of the XRCC3 protein is composed of 17 α helices, 15 β sheets and 3 β hairpins. (Figures 6 
and 7). 
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Figure 7: Analysis of the secondary structure of XRCC3 protein 

Figure 7 presents a schematic representation of the secondary structural elements of the XRCC3 protein, 
generated using the PDB-Sum server [44,45]. The diagram outlines the arrangement of secondary 
structures (α helices and β sheets). 
Identification of XRCC3 protein active site through computational method 
To identify potential ligand-binding regions, computational tools such as CASTp and SiteMap were 
employed. CASTp analyzes topographical features of proteins by incorporating Connolly’s molecular 
surface and Richards’ solvent-accessible surface models. As shown in Table 2, suggesting possible 
functional or ligand-interaction sites within this segment of the XRCC3 structure. 

Table 2: The potential active site residues of XRCC3 

S. NO. 
Active site 

prediction tool / 
server 

Site 
number Amino acids Volume of the site 

(Å) 

1 SiteMap 

1 

6,7,8,10,13, 
55,58,59,60,61, 
63,68,69,71,72, 
73,78,80,93,94, 
98,99,100,101, 

102,232,233,235, 
236,239,240,243, 
246,247,284,285, 
286,287,288,290, 
291,293,294,320, 

321,322,323 

548.8 

2 
9,10,11,44,45,51, 

191,195,196,199,200, 
237,238,240,241,244 

253.134 

2 CASTp 

1 

105,109,220,223, 
225,226,227,228, 
231,232,258,259, 
260,261,262,263, 
265,267,269,270, 
271,275,277,279, 

284,285,300 

670.094 

2 

108,109,220,223, 
225,226,227,228, 
231,232,258,259, 
260,261,262,263, 
264,265,267,269, 
270,271,272,275, 
276,277,279,283, 

284,285,300 

438.577 
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CASTp analysis identified two larger binding pockets, whereas SiteMap revealed comparatively similar 
hydrophobic regions. The CASTp – derived sites and SiteMap findings in agreement with protein-protein 
interactions (PPI) studies, suggest that this region serves as the functional active site of XRCC3 protein.  
Structure-based virtual screening and docking studies 
In this study, structure-based virtual screening (SBVS) was employed to discover novel ligand candidates 
targeting the XRCC3 protein. A grid of 64 Å × 64 Å × 64 Å was defined at the protein’s active site to 
facilitate docking. Ligands were pre-processed using Schrodinger’s LigPrep Module (LigPrep, version 
2023, Schrödinger, LLC, New York, NY, 2023) which optimized molecular geometry, generated 
energetically favorable conformers, and produced various ionization and tautomeric states using Epik. 
Adjustments were made to ensure stereochemical and structural integrity, especially in fused ring 
systems. 
30,000 molecules from the Comprehensive Marine Natural Products Database (CMNPD) were subjected 
to LigPrep and 45,619 ligand structures were generated as an output 46-48. These were subjected to 
hierarchical docking using HTVS, SP, XP protocols in Glide (Glide, version, Schrödinger, LLC, New York, 
NY, 2023), progressively narrowing candidates based on binding affinity. From this screening, 25 ligands 
showed promising interactions, and top ten representative ligand-protein complexes were ranked by 
Glide score (Table 3, Figure 8). 
Analysis revealed favorable hydrogen bonding interactions, with bond lengths ranging from 1.48Å to 
2.68Å (Table 4). These interactions were visualized in Accelrys Discovery Studio Visualizer v24.1.0 (49), 
supporting the ligands’ potential for strong XRCC3 binding. 

Table 3: Docking glide score and glide energy 
Serial 

Number 
Ligand structure Glide 

energy(kcal/mol) 
Glide 
Score 

H- Bond 
Interactions 

H - Bond 
Distance 

(Å) 
 
 

L1 

 

 
 

-42.603 

 
 

-7.250 

L1- ARG 51 
L1- THR 241 
L1- ASN 195 

1.50 
1.87 
1.73 

 
 
 

L2 
 

 
-39.835 

 
-7.215 

L2- ASN 195 
L2- THR 241 
L2- LYS 196 
L2- GLU 244 

 

2.06 
1.93 
1.62 
1.61 

 
 

L3 

 

 

 
-40.616 

 
-7.320 

L3- THR 241 
L3- GLU 244 
L3- LYS 196 
L3-  ASN 195 

1.86 
1.48 
2.00 
1.89 

 
 

L4 

 

 
 

-45.057 

 
-7.144 

L4- ASN 195 
L4- THR 241 
L4- GLU 244 

 

1.76 
1.95 
1.68 

 
 

L5 

 

 
-42.350 

 
-7.101 

L5- THR 241 
L5- GLU 244 
L5- LYS 196 
L5- ASN 195 

1.98 
1.57 
2.00 
1.94 

 
 

L6 

 

 

 
-45.459 

 
-6.968 

L6- ASN 195 
L6- THR 241 
L6- GLU 244 

L6- ASN 9 

1.58 
2.11 
1.73 
2.68 
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The table 3 presents representative ligand structures and their binding profiles with the XRCC3 protein, 
selected from 25 docked complexes through virtual screening using the comprehensive marine natural 
products database. Glide docking scores, interaction energies, and hydrogen binding data are included. 
Most ligands consistently interact with key XRCC3 residues ASN-195, LYS-196, THR-241, GLU-244 
highlighting their specificity and favorable binding affinity. Notably, ligands featuring M1 to M6 emerged 
as pharmacophores with potential inhibitory activity against XRCC3 protein. 
 
LIGAND 1 – XRCC3  

             
LIGAND 2 – XRCC3   

            
LIGAND 3 – XRCC3 
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LIGAND 4 – XRCC3 

          
LIGAND 5 -  XRCC3  

                
LIGAND 6 – XRCC3 

               
Figure 8: Interpretation of interactions between ligand and XRCC3 protein using Accelrys 

Discovery Studio Visualizer v24.1.0 and Schrӧdinger Suite 
ADMET (Absorption Distribution Metabolism Elimination and Toxicity) 
Physicochemical Properties 
Evaluation of ADME (Absorption, Distribution, Metabolism, and Excretion) properties is a crucial step in 
the early stages of drug development 24. In this study, the pharmacokinetic profiles of the lead 
compounds and existing XRCC3 – interacting drugs were assessed using the QikProp module from the 
Schrodinger suite (refer to table 4 and 5). The analysis included physiochemical parameters such as 
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molecular weight (≤ 384.1), and hydrogen bond donor and acceptor values, which fell within acceptable 
limits (donors ≤5; acceptors ≤9.5), supporting their drug-likeness. 
Pharmacokinetic properties 
Human oral absorption (HOA) is a key parameter in early drug development. The evaluated ligands 
demonstrated favorable HOA percentages, ranging from 61.474% to 94.049%, indicating strong potential 
for oral bioavailability. The solubility of a compound, crucial for its systemic uptake, was assessed 
through QPlogS values, which remained within the acceptable range (-2.093 to -4.573). Intestinal 
permeability, indicated by QPPCaco values, also fell within permissible levels (59.525- 525.233), 
suggesting efficient gut absorption. 
To evaluate plasma protein binding, QPlogKhsa values were examined, showing appropriate binding 
affinities (-0.511 to 0.503). As blood –barrier (BBB) permeability affects central nervous system (CNS) 
toxicity, QPlogBB values were also considered and found to lie between -1.955 to -0.782, suggesting 
limited CNS penetration. Moreover, CNS activity scores for the ligands were negative, indicating minimal 
neurotoxicity risk. Lastly, potential cardiac toxicity was assessed using predicted hERG channel inhibition 
(pIC50). All ligands showed acceptable inhibitory values from   -3.807 to -4.118 (figure 4 and 5). 

Table 4: Predicted pharmacokinetic and drug likeness properties of identified ligands obtained 
from virtual screening 

Ligand Num
ber 

Physicochemical Properties Pharmacokinetic properties Drug Likeness 
Property 

m
ol_M

W
 

donorH
B

 

acceptH
B

 

Q
PlogS 

H
O

As%
 

Q
PPCaco 

Q
PlogKhsa 

Q
PlogPw

 

Q
PlogBB

 

CNS 

Q
PlogH

ERG 

Rule O
f Five 

Rule O
f 

Three 

Q
Plog Po/w

 

L1 334.368 2 6.2 -3.92 71.79 90.378 0.114 11.569 -
1.503 

-2 -
4.062 

0 0 1.68 

L2 280.277 3 6.4 -
2.093 

61.474 60.923 -
0.511 

12.217 -
1.947 

-2 -
4.088 

0 0 0.441 

L3 280.277 2 7.2 -2.33 61.834 70.425 -
0.475 

11.947 -
1.671 

-2 -
3.807 

0 0 0.311 

L4 334.368 2 6.2 -3.82 72.52 98.472 0.108 11.555 -
1.443 

-2 -
3.981 

0 0 1.69 

L5 280.277 3 6.4 -
2.095 

61.355 59.525 -
0.508 

12.275 -
1.955 

-2 -
4.118 

0 0 0.449 

L6 346.466 3 3.95 -
4.573 

94.049 525.233 0.503 10.178 -
0.782 

-1 -
3.888 

0 0 3.145 

 
Table 5: Permissible ranges of Absorption Distribution Metabolism Elimination 

S. 
No. 

Descriptor ADME Property Permissible Ranges or 
Recommended Value 

1 CNS Predicted central nervous system activity on -2 
to +2 scale 

–2 (inactive) to +2 (active) 

2 mol_MW Molecular weight of the molecule 130 to 725 
3 DHB Estimated number of hydrogen bonds donated 

by solute in aqueous solution 
0 to 6 

4 AHB Estimated number of hydrogen bonds accepted 
by solute in aqueous solution 

2 to 20 

5 QPPcaco Predicted Caco-2 cell permeability (nm/sec) <25 = poor, >500 = great 
6 QPlogPw Predicted water/gas partition coefficient 4.0 – 45.0 
7 QPlogPo/w Predicted octanol/water partition coefficient –2.0 – 6.5 
8 QPlogS Predicted aqueous solubility, log S (mol/dm³) –6.5 – 0.5 
9 QPlogKhsa Predicted binding to human serum albumin –1.5 – 1.5 
10 QPlogHERG Predicted IC₅₀ for blockage of HERG K⁺ channels Below +5.0 
11 QPlogBB Predicted blood/brain partition coefficient –3.0 – 1.2 
12 % Human Oral 

Absorption 
Predicted human oral absorption on 0 to 100% 
scale 

>80% = high; <25% = poor 

13 Rule Of Five Number of violations of Lipinski’s Rule of Five Maximum is 4 
14 Rule Of Three Number of violations of Jorgensen’s Rule of 

Three 
Maximum is 3 

15 Synthetic Feasibility Predicted synthetic feasibility on scale of 1 to 10 0 = high feasibility, 10 = least 
feasible 

16 Lipophilicity Predicted lipophilic nature (pIC50 – LogP) min -6; max +3 
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Drug likeness properties 
All selected ligands comply with Lipinski’s rule of five and Jorgensen’s rule of three [50] [51], indicating 
favorable drug-like properties. Their lipophilicity, which influences membrane permeability and 
transport, is within an acceptable range, with QPlogPo/w values spanning from 0.311 to 3.145 (Table 5). 
These results reflect satisfactory ADME profiles. 
Toxicity 
A significant number of therapeutic agents undergo metabolism via the cytochrome P450 (CYP450) 
enzyme system. Any disruption in theses pathways may result in toxic outcomes. To assess the potential 
toxicity of the identified ligands, the Pro Tox 3.0 tool was utilized (Table 6). The impact of the ligands on 
the CYP450 enzymes was evaluated to determine whether they act as inhibitor (+) or non-inhibitor (-). 
This modulatory behavior is essential for dose optimization and possible drug combination and possible 
drug combinations. The ADMET analysis [53] indicates that the screened ligands exhibit improved drug-
like characteristics and synthetic accessibility compared to conventional drugs, suggesting their potential 
as novel candidates for Breast Cancer.   

Table 6: Predicted toxicity using ProTox-3.0 server 
S. NO. CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 
L1 INACTIVE INACTIVE INACTIVE INACTIVE ACTIVE 
L2 INACTIVE INACTIVE INACTIVE INACTIVE INACTIVE 
L3 INACTIVE INACTIVE INACTIVE INACTIVE INACTIVE 
L4 INACTIVE INACTIVE INACTIVE INACTIVE INACTIVE 
L5 INACTIVE INACTIVE INACTIVE INACTIVE INACTIVE 
L6 INACTIVE INACTIVE INACTIVE INACTIVE ACTIVE 

Table 6 displays the potential toxic effects of ligand L1 to L6 on the Cytochrome p450 enzyme. It outlines 
whether each ligand and the breast cancer drug act as inhibitors (indicated by positive values) or non – 
inhibitors (indicated by negative values) of the p450 enzyme system. 
The identified ligands, exhibit both positive and negative inhibition values, suggesting a low likelihood of 
causing adverse interactions. According to the predicted ADMET results, the ligands (L1 TO L6) obtained 
through virtual screening demonstrate more favorable drug-likeness characteristics. Therefore, these 
compounds hold potential as promising candidate for developing new breast cancer inhibitors. 
 
CONCLUSION 
The present study effectively elucidates the structural and functional insights of the XRCC3 protein, a 
critical player in homologous recombination-mediated DNA repair, and highlights its role in breast cancer 
pathogenesis. By constructing a high-fidelity three-dimensional model of XRCC3 using computational 
homology modeling tools, key structural features and potential active sites were identified with 
confidence. Structure-based virtual screening of marine natural product libraries enabled the selection of 
six promising ligands (L1–L6) based on strong binding affinities and stable protein-ligand interactions at 
critical residues such as THR241, ASN195, GLU244, and LYS196. The identified ligands were further 
validated through detailed ADMET profiling, revealing excellent pharmacokinetic and drug-likeness 
properties, including favorable molecular weights, solubility, permeability, oral absorption, and low CNS 
activity, with no violations of Lipinski’s Rule of Five or Jorgensen’s Rule of Three. Moreover, toxicity 
analysis using the ProTox 3.0 platform confirmed the non-toxic behavior of these ligands, with minimal 
inhibitory effects on key cytochrome P450 enzymes, indicating reduced risk of drug-drug interactions and 
metabolic complications. Notably, all ligands displayed low hERG inhibition values, minimizing potential 
cardiotoxicity. Among them, Ligand L6 exhibited superior Caco-2 permeability and oral absorption, 
suggesting excellent bioavailability. Collectively, the integration of molecular modeling, docking, ADMET 
evaluation, and toxicity assessment offers a comprehensive framework for early-phase drug discovery. In 
summary, this study identifies potent and selective XRCC3 inhibitors with drug-like characteristics, which 
could serve as promising therapeutic candidates for breast cancer intervention. The findings not only 
reinforce the therapeutic potential of targeting XRCC3 in cancer therapy but also exemplify the power of 
in silico methods in accelerating drug discovery pipelines. Further in vitro and in vivo studies are 
warranted to validate these compounds’ efficacy and safety. 
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