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ABSTRACT 

The patient features at the wound level, biological, environmental, and socioeconomic factors all play a part in the 
complex and dynamic process of healing wounds. Haemostasis, inflammatory response, proliferation, and remodelling 
are all parts of its mechanism. An assessment of the wound's angiogenesis, inflammation, mesh of connective tissue 
restoration contracture of the wound, remodelling, and re-emphasizing would provide information about the process of 
recovery. Research on wounds requires an understanding of important factors in the healing process. Artificial 
intelligence has the potential to be a beneficial tool in improving the complex process of wound healing, which is 
influenced by a multitude of factors. The application of artificial intelligence (AI) in wound healing, including diagnosis, 
therapy, planning, monitoring, and predictive analytics, is examined in this comprehensive review. A variety of AI 
methods such as computer vision, profound understanding and machine learning, are covered in this review. 
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INTRODUCTION 
A cut results from a break in the surface of the skin or from conditions like burns, psoriasis, eczema, and 
dystrophic epidermolysis bullosa. The cause of it is a disturbance of the norm anatomical structures and 
functioning [1-3]. Wounds are characterised based on the American Society of Anesthesiology score, 
which takes into account factors such the injury's origins, position, dimension, depth, design, exposure to 
the outside world, degree of gross contamination, healing duration and severity, and potential infection 
risk [1, 2,4–8]. Typical types include temporary versus ongoing, accessible versus shut down, pure versus 
contaminated, inner versus outside, shallow versus deeply, partial depth versus entire thickness, surgery 
versus painful, and stress against ulcers caused by diabetes. 
a] Hemostasis: Immediate response to stop bleeding. 
b] Inflammatory Phase: Redness, swelling, and pain as the body defends against infection.  
c]Proliferative Phase: Tissue repair and collagen formation. 
d] Remodeling Phase: Maturation of scar tissue over time. 

 
Fig 1: Stages of wound healing 
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Wound healing phases and the main cells required. The initial stage of wound healing is hemostasis, 
characterised by the creation of a primary fibrin matrix and a platelet pull to halt blood loss. The release 
of histamine by mast cells sets off the subsequent stage, inflammation, which starts with neutrophil flux 
to clear debris and stop infection. Monocytes are separated into tissue macrophages upon arrival; these 
macrophages do not include any leftover neutrophils or cell debris. During the proliferative phase, 
fibroblasts replace the initial fibrin clot with granulation tissue, keratinocytes cover the wound gap, and 
angiogenesis repairs blood vessels. Additionally required for this stage of recovery are macrophages and 
regulatory T cells, or Tregs. Fibroblasts eventually continue to alter the matrix that...After a while, blood 
vessels retreat, myofibroblasts force the wound to compress overall, and fibroblasts keep editing the 
matrix that has been deposited. [14,15, 16]. Image analysis allows for the reconstruction of the wound, 
including the periwound areas and its underlying components. Images can be used to evaluate the rate of 
wound healing. Computer scientists have been using artificial intelligence (AI) and computer algorithms 
to replicate and automate human thought processes since the 1950s [17]. ANNs [18,19] and fuzzy logic 
[20,21] are two of the primary machine learning methods used in artificial intelligence. Artificial 
intelligence (AI), which has been discovered to permeate most facets of modern technology and human 
existence, has been shown to be disseminated more quickly thanks to artificial neural network technology 
known as "deep learning" [19, 22]. 
 
ARTIFICIAL INTELLIGENCE IN WOUND ASSESSMENT 
Clinical practice can greatly benefit from an efficient and successful evaluation of acute as well as long-
term wounds. This can help wound care teams achieve better patient outcomes in terms of related to 
health quality of life, optimise treatment regimens, minimise workloads, and improve wound diagnosis. 
because of a shortage of skilled wound specialists in primary and remote medical environments, many 
patients with wounds may not possess access to professional wound care and current recommendations. 
The advancement of remote telemedicine technologies has made it possible to offer patients in remote 
areas—especially rustic ones—better diagnostic advice [23]. Given the increasing use in terms of artificial 
intelligence (AI) technology and portable gadgets like cellphones, it's currently appropriate to grow 
intelligent and remote evaluation, prediction systems for wound care. Improved accuracy, reduced 
workload and cost, standardised identification and administration, and better patient care are just a few 
of the numerous reasons that a clever system has the potential to be extremely advantageous to treat 
wounds [24]. 
 
WOUND ASSESSMENT FRAMEWORK  
The computerised in segmentation, a deep learning model is utilised to identify the dead tissue, 
granulation tissue, and the wound region, and epithelialization area, and the automatic colour calibration, 
that is normalises the colour of a a picture of the wound for more precise examination of images, make up 
the framework for wound assessment. We utilised a multi-task deep learning model with two output 
branches: one for the segmentation of the wound area and the other for the segmentation of the wound 
tissue since there are two types of wound tissue and the wound area is the part of the body where the 
skin is exposed to injury. 
The colour and measurement calibration chart can be used to convert the model to the actual metric 
scale. After then, this can be used to track how the treatment is progressing.[25] 
 
WOUND DETECTION 
The process consists of three primary parts: An electronic system that defines the wound's perimeter by 
choosing the interest region; an automated system that measures the area with the help of a system; an 
external calibrator that uses a convolutional network with training to categorise the tissues of the wound. 
Clinicgram®, a smartphone application, was used to apply these techniques to clinical settings. This 
mechanism's primary objective is to find the wound's edge in the picture. It utilises the resemblance in 
between neighbouring pixels. As soon as taking a picture of the injury using Using a smartphone, the user 
scribbles something inside the wound's position to assist the system in determining the woundFig. 3. 
Once the system has after determining the wound's outline, a mask is put on to separate the area of 
interest from the surrounding area and the intact skin. After experimenting with various methods 
(including Felzenszwalb [26], mean shift, and Quick shift [27]), The framework employs a superpixel 
technique [28,29] and a k-means technique [30] to ascertain the Region of Interest (ROI) boundaries and 
the shape of the wound. Using an automatic procedure, the superpixel approach splits a divided the image 
into sections that share comparable features or have consistent interpretations. The unsupervised 
classification algorithm k-means, on the other hand, clusters objects according to their attributes by 
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minimising the total of the separations between every item and its cluster or grouping centroid, which is 
normally determined by its quadratic distance. 

 
Fig 2 Two examples of how the system can identify a wound are as follows: first, take a test image; then, 

using that image as a guide, Lastly, get the wound mask after drawing inside the area of interest. 

 
Fig 3 An illustration of a decoded region of interest, a scraw image, an image with superpixel 

segmentation, and an original image 
 
AREA CALCULATION 
You'll need a marker or calibrator., and the wound area is computed using the return on 
investment from the earlier stage. The marker in this instance is a blue square to set it apart 
from the background. This square marker's physical dimensions are always 2 cm on each side; 
therefore, we can compute the actual wound area by interpolating the marker's size from the 
image. 
TISSUE CLASSIFICATION 
One of the most crucial aspects of effectively identifying the tissue in wound imaging is accurately 
segmenting the tissue sections found in the sample. Erroneous boundaries, uneven forms, and very 
diverse hues can all be seen in complex wounds [31]. It was suggested that a convolutional network be 
used to build a system that categorises the many kinds of wounds. As a result, a dataset of wounds 
(n=726) was used to train multiple models. 
GADGETS AND SOFTWARE-BASED COMPUTER TECHNIQUES  
The conventional techniques include digital planimetry from images, transparent acetate planimetry, and 
graduated ruler measurement. Because square ruler measuring is rapid, easy, and doesn't require any 
specific training, it is frequently employed in normal clinical practice. Its accuracy is restricted, though, 
particularly when measuring wounds with irregular shapes. Furthermore, precision usually decline with 
more severe wounds, and this method typically overestimates the real wound size.  [32, 33]. 
Applications and software for wound planimetry that are sold commercially include [32,34]. 
 The Silhouette Mobile, a Class I (FDA) gadget, is connected to a computerised personal assistant 

through its laser beam scanning head and camera. The surface topography of the wound is described 
by the laser line curves formed by the laser beams. These line curves are computed by the personal 
digital assistant to produce a three-dimensional representation of the wound surface. Using a stylus, 
the doctor draws the image's wound margin to compute the wound area.  [32]. 

 Developed in 2013, AreaMe® is a software application for mobile devices that tracks the location of a 
wound using a 1 x 1 cm grid. This is not a certified medical device. The borders of the injury have to be 
physically delineated on a translucent sheet that was positioned above the injury earlier. The 
programme also creates a graph showing the evolution of the wound area over time and uploads the 
information to a medical database. 

 This need was addressed by the development of the NDKare® application, which our study assesses 
for accuracy and usefulness in the measurement of DFU wound size. It was evaluated how accurate the 
NDKare mobile application is at measuring both two- and three-dimensional (3D) wounds.  
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 ImitoMeasure®: Digital wound measurement enables accurate wound measurement without the use 
of a scale. 

 WoundVue®: this technology not only objectively classifies the different tissue types present in a 
wound, but it can also measure the volume and surface area of a wound.  

 Planimetor®: Two calibration markers that are one dimensional were positioned beneath and above 
the incision's contour to determine the planimetric area.  

 The models Pictzar CDM and PRO®. Using a ruler next to the lesion, this software takes digital photos 
of the skin lesion to measure it. They don't need to know how far the subject is from the camera lens, 
but they do need a ruler in the picture.  

 Wound Matrix®. The surface of skin lesions is measured by this telemedicine programme. It is mostly 
meant for businesses and organisations.  

 WoundWiseIQ. The purpose of this software is to quantify skin lesions. It can only be used using ions 
as the operating system.  

 A Class II device is the Visitrak (FDA)gadget that uses a translucent tracing sheet with two layers with 
a previously created wound out-line to calculate the wound area. Following the injury has been 
tracked down and positioned on the Visitrak device, the clean layer and contaminated layer are 
separated. In order to assess the wound area, the physicians redraw the wound contour using the 
Visitrak pen [32]. Compared to the manual planimetry method using transparent acetate, Visitrak 
offers higher measuring precision. However, because Visitrak needs to come into contact with the 
injury surface, there is a higher possibility of infection, pain, and harm to the incision.  

MACHINE LEARNING 
Machine learning employs the available data to teach an algorithm or function, negating the need for 
hand-crafted rules. It is feasible to use both supervised and unsupervised machine learning techniques. 
With the help of labels and input data, supervised machine learning techniques may automatically map 
input data to the correct output. Numerous well-known supervised algorithms consist of neural networks 
(NN), decision trees (DT), logistic regression (LR), k-nearest neighbour; (KNN), Bayesian network (BN), 
random forest (RF), radial basis function networks (RBF), discriminant analysis (DA), support vector 
machine (SVM), Naïve Bayes (NB), single- and multi-layered perceptrons (MLP), [35, 36] 
PROFOUND UNDERSTANDING 
Deep education is a subfield of machine intelligence that takes its cues from the human brain. Rather than 
requiring human-designed rules, deep learning supervised learning) or unsupervised learning) that 
groups input into distinct labels based on massive amounts of data [37]. explored various well-liked 
methods, such as stacked (denoising) autoencoders, Convolutional neural networks, deep belief 
networks, and deep boltzmann machines are examined in a deep learning algorithms survey for computer 
vision. Additionally, a number of well-known deep learning techniques for medical image analysis have 
been discussed, including variationsal auto-encoders and restricted boltzmann machines and deep belief 
networks, generative adversarial networks, GoogleNet, AlexNet, VGG 19, FCNN, ResNet, RNNs, LeNet, and 
auto-encoders and stacked auto-encoders [38]. 
SMART WOUND DRESSING 
Unlike the conventional ways of assessing wounds, which involve making physical touch with a 
measuring tool like a plastic film or ruler, smartphone-based approaches can, in their most basic form, be 
non-contact and rely on digital image processing [39, 40]. Without the need for additional equipment or 
specialised training, the superior quality of the image’s technologies found on modern Mobile phones can 
greatly improve the accuracy and dependability of wound measures [41, 42, 43]. The development of 
mobile applications and new advancements in electronics have stoked expectations for the creation of 
sophisticated smart instruments that can prevent infection and impede the healing process in order to 
treat chronic wounds., while also providing adequate diagnostic data. These intelligent technologies have 
the capacity to accurately sense, report, and act upon an instruction as needed. In this sense, sensors 
constitute the first essential step. Sensors can reduce the amount of time needed to make decisions about 
wound care without requiring frequent clinician visits or dressing changes by offering a clear map based 
on the most important criteria of the wound status. Ultimately, these developments result in lower 
medical expenses and shorter hospital stays [44, 45]. The important factors are the pressure, pH, wound 
oxygenation level, and uric acid content [ fig 4]. 
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Fig 4 Dressing that is smartphone-based and has the capacity to administer medication and 

monitor wounds 
 
CONCLUSION 
In conclusion, by offering objective assessment, customised treatment plans, and predictive analytics, 
artificial intelligence is a useful tool in the advancement of wound healing. Even though there are a 
number of obstacles to overcome before AI can fully realise its potential to improve patient outcomes and 
optimise the administration of wound care, research efforts are encouraging. Sustained cooperation 
among physicians, scientists, and tech creators is important in order to fully use artificial intelligence's 
advantages and convert them into significant advancements in the treatment of wound healing.  
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