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ABSTRACT 
The limited success of conventional antibiotics against resistant pathogens has emphasized the need for novel 
antibacterial strategies. MurG-glycosyltransferase, a key enzyme in peptidoglycan biosynthesis, represents a promising 
but underexplored target. In this work, twenty N-ethylidene-4-(furan-2-yl)oxazol-2-amine derivatives were 
computationally designed and evaluated as potential MurG inhibitors. The ligands were energy-minimized and subjected 
to molecular docking using AutoDock Vina (PDB ID: 1NLM), while pharmacokinetic and toxicity properties were 
predicted through SwissADME and ADMETlab 3.0. Docking simulations revealed favorable binding affinities for several 
derivatives compared to the native ligand, with KS16 achieving the highest docking score (–8.9 kcal/mol), followed by 
KS20, KS10, and KS15. Interaction profiling showed consistent hydrogen bonding, electrostatic attraction, and 
hydrophobic stabilization with key active-site residues including GLU269, ARG164, and PHE21, supporting strong 
complementarity between the designed scaffolds and MurG. ADMET analysis further indicated that multiple derivatives, 
notably KS7, KS8, KS12, and KS20, demonstrated improved drug-likeness, oral absorption, and bioavailability predictions 
over the reference compound. Together, these computational findings identify several N-ethylidene-4-(furan-2-yl)oxazol-
2-amine derivatives with favorable pharmacological profiles and MurG inhibitory potential. This study highlights their 
promise as lead scaffolds for antibacterial development and provides a foundation for subsequent experimental 
evaluation. 
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INTRODUCTION 
Bacterial infections continue to be a major global health concern, contributing to significant morbidity 
and mortality despite decades of progress in antimicrobial therapy [1,2]. The emergence and rapid spread 
of antimicrobial resistance (AMR) have substantially reduced the effectiveness of conventional 
antibiotics, creating an urgent need for novel therapeutic strategies [3]. According to the World Health 
Organization, resistant bacterial pathogens pose one of the greatest threats to public health in the 21st 
century, with multidrug-resistant (MDR) strains complicating treatment outcomes and leading to 
prolonged illness, higher medical costs, and increased mortality. The limited availability of new 
antibiotics, together with the persistent emergence of resistance strains, demands the investigation of 
alternate strategies to discover new therapeutic targets and inhibitors with innovative modes of action. 
Among the potential bacterial pathways, the peptidoglycan biosynthesis process has emerged as a highly 
promising target, owing to its essential role in bacterial cell wall formation and its absence in human 
metabolic pathways [4–7]. 
Peptidoglycan is a crucial structural component of the bacterial cell wall, providing rigidity and protecting 
cells from osmotic lysis. Its biosynthesis involves a highly coordinated series of enzymatic steps, many of 
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which are indispensable for bacterial survival and growth [8–11]. One such critical enzyme is MurG-
glycosyltransferase, which catalyzes the final intracellular step of peptidoglycan precursor synthesis. 
Specifically, MurG facilitates the transfer of N-acetylglucosamine (GlcNAc) to lipid I, forming lipid II, a 
universal precursor for cell wall biosynthesis in both Gram-positive and Gram-negative bacteria. 
Inhibition of MurG effectively blocks cell wall formation, leading to bacterial death. Unlike several other 
peptidoglycan biosynthesis enzymes that already serve as targets for existing antibiotics, MurG remains 
underexplored, making it a particularly attractive target for the development of next-generation 
antibacterial agents [12–16]. 
In recent years, computational approaches such as molecular docking, pharmacokinetic profiling, and 
virtual screening have emerged as powerful tools in early-stage drug discovery. These methods allow 
rapid, cost-effective evaluation of large chemical libraries to identify potential drug candidates before 
experimental validation. In silico screening not only accelerates the drug discovery process but also 
enhances target-specificity predictions by providing structural and mechanistic insights into ligand–
protein interactions. By concentrating on critical binding sites of target proteins, computational 
techniques reduce attrition rates in subsequent experimental phases and promote rational drug design 
[17–20]. 
The search for effective MurG inhibitors has motivated the exploration of novel heterocyclic compounds, 
which are well-recognized for their diverse biological activities and structural versatility [21,22]. Among 
heterocyclic frameworks, oxazole and furan scaffolds have been widely studied in medicinal chemistry 
due to their antimicrobial, anticancer, and anti-inflammatory potentials. The incorporation of oxazole 
moieties often enhances bioactivity through favorable hydrogen-bonding interactions with target 
proteins, while furan rings contribute to aromatic stacking and electron-rich interactions that stabilize 
ligand–enzyme complexes. Furthermore, Schiff base derivatives, formed through condensation reactions 
of primary amines with carbonyl compounds, have gained attention due to their pharmacological 
diversity, metal-chelating ability, and high binding affinity toward various biomolecular targets. 
In this context, N-ethylidene-4-(furan-2-yl)oxazol-2-amine derivatives represent a rationally designed 
class of compounds combining oxazole and furan scaffolds with Schiff base characteristics. Such hybrid 
structures are anticipated to exhibit improved antibacterial potency by leveraging multiple 
pharmacophoric features capable of interacting with MurG active sites. However, the potential of these 
compounds as MurG inhibitors has not to be comprehensively assessed. Computational analysis of their 
binding affinity, stability, and pharmacokinetic properties offers a strategic starting point for identifying 
lead molecules for further in vitro and in vivo studies. 
The present study aims to perform an In silico screening of N-ethylidene-4-(furan-2-yl)oxazol-2-amine 
derivatives as potential MurG-glycosyltransferase inhibitors for bacterial infection management. Through 
molecular docking, binding energy calculations, and pharmacokinetic predictions, this research seeks to 
identify compounds with high inhibitory potential, favorable ADMET properties, and stable interaction 
profiles within the MurG active site. The outcomes of this study will provide critical insights into the 
design of novel antibacterial agents targeting MurG and contribute to the ongoing efforts to combat 
antimicrobial resistance through the discovery of innovative chemotherapeutic agents. 
 
MATERIAL AND METHODS 
Molecules Designing and Ligand Preparation 
All N-ethylidene-4-(furan-2-yl)oxazol-2-amine derivatives were designed using ChemDraw Ultra, and 
their 2D structures were converted into 3D using Chem3D. The ligands were energy-minimized and saved 
in MOL format for computational analysis. Structural modifications and substituents incorporated for 
derivative design are illustrated in Table 1. 

Table 1: The structure of all selected substitutions and parent nucleus. 

 (1-20)  
Compound Code Substitutions Compound Code Substitutions 
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KS1 —2-pyridyl KS11 —3-hydroxy phenyl 
KS2 —phenyl KS12 —2,3,4-trihydroxy phenyl 
KS3 —4-nitro phenyl KS13 —3-methoxy-4-hydroxy phenyl 
KS4 —4-bromo phenyl KS14 —2-methoxy phenyl 
KS5 —4-fluoro phenyl KS15 —4-styryl 
KS6 —4-chloro phenyl KS16 —napthyl 
KS7 —4-methyl phenyl KS17 —2,4-dinitro phenyl 
KS8 —4-methoxy phenyl KS18 —4-methylsulfonyl phenyl 
KS9 —4-hydroxy phenyl KS19 —4-dimethylamino phenyl 

KS10 —3-nitro phenyl KS20 —4-trifluoromethyl phenyl 
 
In silico ADMET Screening 
In drug development, in silico ADMET screening plays a crucial role in the early identification of potential 
pharmacokinetic and toxicity issues. This computational approach enables scientists to simulate drug 
behavior in the human body, thereby reducing the likelihood of late-stage failures, minimizing time 
requirements, and decreasing costs associated with experimental testing. Consequently, this process 
accelerates the development of new medications and enhances the probability of achieving safe and 
effective therapies [23]. To assess ADMET parameters in this study, two platforms were utilized: 
ADMETlab 3.0 and SwissADME. ADMETlab 3.0, the latest iteration of this platform, offers a 
comprehensive and efficient system for analyzing ADMET metrics, physicochemical properties, and key 
medicinal chemistry characteristics pertinent to drug design. SwissADME complements this by providing 
calculations for physicochemical descriptors and predictions for ADME characteristics, pharmacokinetic 
properties, drug-likeness, and medicinal chemistry suitability for single or multiple small molecules. The 
combined use of these tools significantly enhances the drug development process [24–28]. 
Molecular Docking 
We performed molecular docking analyses using AutoDock Vina 1.2.0. The crystal structure of MurG-
glycosyltransferase (PDB ID: 1NLM) was obtained from the Protein Data Bank  (https://www.rcsb.org 
/structure/4y6m) and processed using AutoDockTools 1.5.6. Water molecules were removed, polar 
hydrogen atoms were added, and Gasteiger charges were assigned. Ligands were constructed using 
OpenBabel 3.1.1 to generate three-dimensional structures and optimize energy levels. The grid box was 
centered on the active site at coordinates X: 37.884282, Y: -3.588333, and Z: 20.849103. The highest-
scoring poses were selected based on binding affinity and protein-ligand interactions [23,29]. All ligands, 
including the native ligand and target, were input into the PyRx virtual screening program for docking 
experiments. After molecular docking we perform a docking interactions. These interactions were 
analyzed using Biovia Discovery Studio [24,30,31]. Figure 1 shows all the selected compounds along with 
the native ligand (NL) bound to the MurG-glycosyltransferase enzyme (PDB ID: 1NLM). 

 
Figure 1: Molecular docking of all selected compounds and NL with MurG-glycosyltransferase 

enzyme (PDB ID: 1NLM). 

https://www.rcsb.org
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RESULTS AND DISCUSSION 
In Silico ADMET Analysis 
ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analysis is crucial in drug 
discovery and development, providing insights into a compound's behavior within biological systems. 
This in silico approach predicts pharmacokinetic and toxicological properties, helping to identify potential 
drug candidates and reduce the likelihood of late-stage failures. The analysis of the selected derivatives 
reveals significant variations in physicochemical properties compared to the native ligand (Table 2). The 
native ligand exhibits a higher molecular weight (607.08) and volume (488.45) than all derivatives, 
suggesting potential challenges in oral bioavailability. KS17 demonstrates the highest topological polar 
surface area (TPSA) among derivatives (137.81), indicating improved water solubility but possible 
limitations in membrane permeability. Lipophilicity (logP) values for all derivatives are generally lower 
than the native ligand (-3.32266), with KS16 showing the highest (4.223495), potentially enhancing 
membrane penetration. Notably, KS1 displays the lowest molecular weight (239.07) and volume 
(237.21), which may contribute to improved oral absorption. The number of hydrogen bond donors and 
acceptors varies among compounds, with KS17 and KS18 exhibiting the highest values, potentially 
affecting their ability to cross biological membranes. Overall, these derivatives present diverse 
physicochemical profiles, with several compounds showing promising characteristics for drug-like 
properties compared to the native ligand, warranting further investigation into their pharmacokinetic 
behavior and potential therapeutic applications. The ADMET radar of all selected compound and native 
ligand are shown in Table 8. 

Table 2: Physicochemical properties of selected derivatives 
Compounds MW Volume Dense nHA nHD nRot nRing TPSA logS logP 

Native Ligand 607.08 488.4516 1.242866 20 8 11 3 294.86 0.143502 -3.32266 
KS1 239.07 237.214 1.007824 5 0 3 3 64.42 -3.26016 2.60299 
KS2 238.07 243.5132 0.977647 4 0 3 3 51.53 -4.19996 3.206622 
KS3 283.06 269.4539 1.050495 7 0 4 3 94.67 -4.82537 2.961508 
KS4 315.98 262.7968 1.202374 4 0 3 3 51.53 -5.08397 3.99329 
KS5 256.06 249.5807 1.025961 4 0 3 3 51.53 -4.18481 3.248798 
KS6 272.04 258.7242 1.051467 4 0 3 3 51.53 -5.04988 3.970746 
KS7 252.09 260.8092 0.966569 4 0 3 3 51.53 -4.85529 3.816114 
KS8 268.08 269.5994 0.994364 5 0 4 3 60.76 -4.43798 3.117477 
KS9 254.07 252.3034 1.007002 5 1 3 3 71.76 -3.76912 2.728667 
KS10 283.06 269.4539 1.050495 7 0 4 3 94.67 -4.73924 3.041798 
KS11 254.07 252.3034 1.007002 5 1 3 3 71.76 -4.03919 2.9815 
KS12 286.06 269.8839 1.059937 7 3 3 3 112.22 -3.92949 2.421738 
KS13 284.08 278.3896 1.02044 6 1 4 3 80.99 -4.00378 2.46745 
KS14 268.08 269.5994 0.994364 5 0 4 3 60.76 -4.49018 3.419037 
KS15 264.09 275.4687 0.958693 4 0 4 3 51.53 -4.16289 3.805061 
KS16 288.09 298.8677 0.963938 4 0 3 4 51.53 -5.09606 4.223495 
KS17 328.04 295.3947 1.110514 10 0 5 3 137.81 -4.7564 2.934022 
KS18 316.05 296.8986 1.064505 6 0 4 3 85.67 -3.94756 2.240795 
KS19 281.12 289.1019 0.972391 5 0 4 3 54.77 -4.43781 3.325567 
KS20 306.06 279.0118 1.096943 4 0 4 3 51.53 -5.03459 4.029549 

 
Drug-likeness is a crucial concept in drug discovery that assesses the likelihood of a compound becoming 
an orally active drug in humans. It encompasses various physicochemical properties that influence a 
compound's behavior in the body. As shown in Table 3, the drug-likeness properties of the designed 
derivatives were evaluated using multiple parameters and rules. Comparing the results to the native 
ligand, it is evident that most of the designed compounds exhibit improved drug-like characteristics. The 
native ligand has a low QED score of 0.117, while the majority of the derivatives show significantly higher 
QED values, ranging from 0.397 to 0.742. Notably, compounds KS9, KS11, and KS13 demonstrate the 
highest QED scores (0.727, 0.727, and 0.742, respectively), indicating enhanced drug-likeness. The NP 
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scores for the derivatives are generally lower than the native ligand, suggesting better synthetic 
accessibility. Regarding compliance with various drug-likeness rules, the native ligand violates the 
Lipinski, Pfizer, and GSK rules, whereas many derivatives show improved compliance. For instance, 
compounds KS1, KS3, KS17, and KS18 satisfy all the evaluated rules, potentially indicating better 
pharmacokinetic properties. However, it is important to note that some compounds, such as KS3, KS10, 
and KS17, have lower QED scores, which may require further optimization. Overall, the designed 
derivatives demonstrate promising drug-like properties compared to the native ligand, with several 
compounds showing potential for further development in drug discovery efforts. 
Table 3: Drug-likeness properties of designed derivatives 

Compounds QED NP Score Lipinski 
Rule 

Pfizer 
Rule 

GSK 
Rule 

GoldenTriangle Chelator Rule 

Native Ligand 0.117 1.051 1 0 1 1 0 

KS1 0.659 -1.488 0 0 0 0 0 

KS2 0.654 -1.235 0 1 0 0 0 

KS3 0.414 -1.561 0 0 0 0 0 

KS4 0.671 -1.335 0 1 0 0 0 

KS5 0.669 -1.596 0 1 0 0 0 

KS6 0.667 -1.478 0 1 0 0 0 

KS7 0.662 -1.331 0 1 0 0 0 

KS8 0.677 -1.139 0 1 0 0 0 

KS9 0.727 -0.852 0 0 0 0 0 

KS10 0.414 -1.7 0 0 0 0 0 

KS11 0.727 -0.842 0 0 0 0 0 

KS12 0.504 -0.492 0 0 0 0 1 

KS13 0.742 -0.618 0 0 0 0 1 

KS14 0.677 -1.159 0 1 0 0 0 

KS15 0.658 -0.753 0 1 0 0 0 

KS16 0.507 -1.149 0 1 1 0 0 

KS17 0.397 -1.501 0 0 0 0 0 

KS18 0.69 -1.536 0 0 0 0 0 

KS19 0.683 -1.419 0 1 0 0 0 

KS20 0.659 -1.443 0 1 1 0 0 

Absorption is a crucial pharmacokinetic parameter that determines the extent to which a drug enters the 
systemic circulation after administration. It is influenced by various factors, including the compound's 
ability to permeate through biological membranes and its interaction with efflux transporters. As shown 
in Table 4, the absorption parameters of the selected compounds were evaluated and compared to the 
native ligand. The Caco-2 and MDCK permeability values for all compounds, including the native ligand, 
were negative, indicating low permeability. However, most of the synthesized compounds (KS1-KS20) 
showed improved Pgp-inhibition and Pgp-substrate properties compared to the native ligand. Notably, 
compounds KS7, KS8, KS12, and KS19 demonstrated high Pgp-inhibition (>0.93) and Pgp-substrate 
(>0.98) values, suggesting their potential to overcome multidrug resistance. The human intestinal 
absorption (HIA) values for the majority of the compounds were higher than the native ligand, with KS7, 
KS8, KS12, KS15, and KS19 exhibiting values above 0.9. Furthermore, the oral bioavailability predictions 
(F20%, F30%, and F50%) for most compounds were superior to the native ligand, indicating enhanced 
potential for oral administration. These results suggest that the synthesized compounds, particularly KS7, 
KS8, KS12, and KS19, possess improved absorption characteristics compared to the native ligand, making 
them promising candidates for further drug development. 
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Table 4: Absorption parameter of selected compounds 

Com
pounds 

Caco-2 
Perm

eability 

M
D

CK
 

Perm
eability 

Pgp-inhibitor 

Pgp-
substrate 

H
IA

 

F20%
 

F30%
 

F50%
 

Native Ligand -5.89769 -5.26322 5.25E-05 4.86E-08 0.406585 4.43E-05 0.969539 0.042976 

KS1 -4.72113 -4.67573 0.285373 0.000446 0.014274 0.340943 0.567542 0.46264 

KS2 -4.72923 -4.61214 0.91515 1.26E-05 0.005723 0.617341 0.767185 0.767324 

KS3 -4.79413 -4.65658 0.756034 2.61E-06 0.001442 0.630664 0.771904 0.833861 

KS4 -4.77447 -4.65018 0.889259 1.27E-06 0.012387 0.804976 0.938694 0.882463 

KS5 -4.46876 -4.6187 0.944254 2.38E-06 0.014404 0.934386 0.948806 0.782766 

KS6 -4.57736 -4.69297 0.878093 2.31E-06 0.013555 0.866476 0.934825 0.859336 

KS7 -4.70425 -4.66745 0.963085 3.87E-06 0.020232 0.985269 0.981994 0.955087 

KS8 -4.87475 -4.73741 0.933277 8.45E-07 0.164093 0.991728 0.993406 0.946038 

KS9 -4.92321 -4.74015 0.818487 4.60E-05 0.011076 0.861668 0.914511 0.942882 

KS10 -4.8112 -4.62892 0.502022 4.22E-06 0.000641 0.390023 0.534157 0.561791 

KS11 -4.94822 -4.76127 0.035868 1.02E-05 0.001696 0.672848 0.594517 0.837579 

KS12 -4.87947 -4.75458 0.171563 3.85E-05 0.038997 0.973602 0.983991 0.983363 

KS13 -4.90764 -4.76218 0.884756 0.000108 0.007381 0.681138 0.639042 0.896118 

KS14 -4.62771 -4.66779 0.874597 0.0007 0.046144 0.55791 0.660845 0.871769 

KS15 -4.65945 -4.59304 0.817648 0.00636 0.004615 0.548392 0.71347 0.91224 

KS16 -4.72997 -4.59968 0.745613 5.70E-05 0.007965 0.375677 0.855669 0.841951 

KS17 -4.82016 -4.57982 0.032176 1.49E-05 0.000187 0.074804 0.269534 0.662609 

KS18 -4.86621 -4.82126 0.519932 6.02E-07 0.007451 0.68989 0.818809 0.394019 

KS19 -4.77409 -4.6737 0.991071 1.14E-05 0.026892 0.918514 0.953017 0.898192 

KS20 -4.67848 -4.73037 0.995761 6.29E-06 0.006545 0.915609 0.907677 0.526286 

 
Distribution and metabolism are crucial factors in determining the pharmacokinetic properties of drug 
candidates. The analysis of selected molecules reveals significant variations in their distribution and 
metabolic profiles compared to the native ligand. The native ligand exhibits low plasma protein binding 
(PPB) of 19.86%, while the KS compounds show substantially higher PPB values ranging from 93.17% to 
98.68%. This increased protein binding may impact the compounds' bioavailability and distribution. The 
volume of distribution (VD) values for KS compounds are generally higher than the native ligand, 
suggesting improved tissue penetration. Blood-brain barrier (BBB) permeability, represented by logBB 
values, varies among the compounds, with some showing better CNS penetration potential than the 
native ligand. Metabolic stability, assessed through CYP enzyme interactions, demonstrates diverse 
profiles for the KS compounds. While the native ligand shows minimal CYP enzyme inhibition and 
substrate potential, several KS compounds exhibit stronger interactions with various CYP isoforms. For 
instance, KS1, KS2, and KS4 show high inhibitory potential for CYP1A2, CYP2C19, and CYP2D6, 
respectively. Some compounds, such as KS14 and KS16, display substrate potential for multiple CYP 
enzymes, which may influence their metabolic clearance. These findings, as presented in Table 5, 
highlight the complex interplay of distribution and metabolic factors among the investigated compounds, 
emphasizing the need for careful consideration of these parameters in further drug development efforts. 

 
 
 
 
 
 



 
 
       

ABR Vol 16 [5] September 2025                                                                    72 | P a g e                        © 2025 Author 

Table 5: Distribution and metabolism parameter of selected molecules 

Com
pounds 

Distribution Metabolism 
PPB

% 
VD BBB Fu CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4 

Inhibitor 

Substrate 

Inhibitor 

Substrate 

Inhibitor 

Substrate 

Inhibitor 

Substrate 

Inhibitor 

Substrate 

Native 
Ligand 

19.86
314 

-
0.771

99 

3.78
E-07 

71.72
19 

4.36
E-11 

4.64
E-06 

1.03
E-08 

1.71
E-07 

9.40
E-08 

1.64
E-06 

5.31
E-09 

2.85
E-09 

1.49
E-08 

4.74
E-05 

KS1 93.17
123 

-
0.298
14 

0.144
393 

4.691
448 

0.999
952 

0.140
148 

0.983
895 

4.32
E-06 

0.290
145 

0.965
363 

1.24
E-05 

0.010
217 

0.002
788 

0.029
842 

KS2 97.89
584 

-
0.094

01 

0.014
812 

1.670
486 

0.999
972 

0.004
24 

0.986
476 

8.91
E-06 

0.988
384 

0.000
335 

2.77
E-06 

0.003
273 

0.018
813 

1.31
E-06 

KS3 94.53
615 

-
0.218

14 

0.000
158 

5.905
7 

0.975
458 

0.031
212 

0.306
638 

0.000
341 

0.847
687 

0.048
198 

0.000
363 

0.166
607 

0.005
01 

0.000
429 

KS4 97.24
968 

0.235
389 

0.009
004 

2.316
666 

0.999
501 

0.002
595 

0.977
576 

0.000
411 

0.998
853 

0.009
652 

0.000
426 

0.243
682 

0.015
929 

2.56
E-05 

KS5 97.10
015 

0.003
696 

0.002
281 

2.531
938 

0.999
84 

0.004
513 

0.963
673 

0.000
142 

0.994
909 

0.009
035 

0.000
198 

0.064
032 

0.020
686 

1.53
E-05 

KS6 98.68
091 

-
0.208

4 

0.004
4 

1.054
809 

0.999
996 

0.049
597 

0.999
092 

4.77
E-05 

0.999
805 

0.005
8 

0.011
591 

0.090
809 

0.008
829 

0.000
119 

KS7 97.82
052 

-
0.034

84 

0.000
661 

2.103
513 

0.999
982 

0.002
411 

0.980
86 

8.95
E-05 

0.998
673 

0.005
142 

2.76
E-05 

0.094
136 

0.117
605 

1.10
E-05 

KS8 96.14
932 

-
0.059

71 

0.000
3 

3.610
238 

0.999
216 

0.025
068 

0.997
802 

0.010
256 

0.999
37 

0.022
901 

0.000
128 

0.780
083 

0.028
623 

0.000
26 

KS9 96.30
099 

-
0.127

52 

0.000
305 

3.333
26 

0.999
341 

0.001
453 

0.595
636 

2.69
E-05 

0.952
162 

0.031
835 

0.000
193 

0.663
918 

0.097
795 

1.39
E-06 

KS10 97.85
264 

-
0.105

85 

0.000
348 

1.914
101 

0.999
954 

0.007
832 

0.999
867 

0.000
929 

0.986
132 

0.070
649 

0.000
388 

0.039
945 

0.015
571 

1.15
E-05 

KS11 95.81
978 

-
0.403

68 

0.001
365 

3.461
707 

0.998
797 

0.004
959 

0.990
047 

9.79
E-06 

0.989
132 

0.001
11 

1.25
E-05 

0.055
046 

0.339
084 

9.93
E-06 

KS12 95.76
196 

-
0.465

15 

0.000
724 

2.972
858 

0.988
575 

0.009
98 

0.133
376 

1.50
E-05 

0.602
31 

0.160
845 

9.62
E-06 

0.180
646 

0.281
538 

3.68
E-07 

KS13 97.58
361 

-
0.524

55 

0.002
417 

2.264
887 

0.999
636 

0.036
733 

0.987
947 

0.002
662 

0.976
162 

0.069
079 

0.003
096 

0.391
599 

0.084
941 

8.13
E-05 

KS14 97.72
192 

-
0.029

07 

0.015
964 

1.861
967 

1 0.019
517 

0.998
865 

4.80
E-05 

0.999
848 

0.081
32 

0.070
399 

0.914
988 

0.988
11 

0.000
862 

KS15 98.51
026 

-
0.242

03 

0.001
244 

1.103
554 

0.999
989 

0.001
555 

0.998
909 

2.96
E-06 

0.995
257 

0.433
105 

0.001
248 

0.931
778 

0.038
566 

7.65
E-08 

KS16 98.33
527 

0.075
909 

0.003
195 

1.132
391 

0.999
999 

0.113
248 

0.999
926 

0.018
969 

0.998
173 

0.703
548 

0.002
214 

0.937
934 

0.009
167 

0.000
366 

KS17 97.83
987 

-
0.372

29 

0.000
646 

2.461
895 

0.998
803 

3.31
E-06 

0.992
93 

3.48
E-05 

0.998
441 

0.000
123 

0.191
476 

0.002
591 

0.478
758 

0.004
115 

KS18 96.99
037 

-
0.199

57 

0.000
519 

3.513
705 

0.873
927 

0.007
414 

0.125
981 

0.002
436 

0.695
177 

0.103
189 

3.59
E-05 

0.011
228 

0.000
288 

0.000
213 

KS19 96.87
576 

0.184
014 

8.08
E-05 

2.759
493 

0.999
811 

0.012
128 

0.988
994 

0.000
117 

0.967
799 

0.005
715 

0.003
164 

0.045
119 

0.008
632 

1.70
E-05 

KS20 97.20
656 

0.310
658 

0.029
487 

2.463
224 

0.988
293 

0.090
215 

0.893
332 

0.003
314 

0.942
671 

0.090
736 

0.000
564 

0.150
044 

0.006
411 

0.001
103 

 
Excretion and toxicity are crucial factors in drug development, influencing a compound's safety profile 
and pharmacokinetic properties. The analysis of these parameters for the native ligand and 20 selected 
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compounds (KS1-KS20) reveals diverse outcomes across various toxicity endpoints and excretion metrics 
(Table 6). Comparing the compounds to the native ligand, notable differences emerge in plasma clearance 
(CL-plasma) and half-life (T1/2). The native ligand exhibits a low CL-plasma (0.893693) and a relatively 
long T1/2 (33.26746), while the KS compounds generally show higher CL-plasma values (ranging from 
3.453985 to 9.570157) and shorter T1/2 (0.4205410 to 1.157932). This suggests potentially faster 
elimination of the KS compounds from the body. Regarding toxicity, the native ligand demonstrates a low 
probability of hepatotoxicity (H-HTD: 0.022324) and drug-induced liver injury (DILI: 0.999996), whereas 
the KS compounds show varied results, with some exhibiting higher hepatotoxicity risks. Mutagenicity 
(Ames Toxicity) is generally higher in the KS compounds compared to the native ligand, indicating a 
potential increase in genetic toxicity. Acute toxicity (Rat Oral Acute Toxicity) is lower in the native ligand 
(0.035818) compared to most KS compounds. The FDA Maximum Daily Dose (FDA MDD) values are 
generally lower for the KS compounds, suggesting potentially safer daily dosage limits. Skin sensitization, 
carcinogenicity, and eye corrosion probabilities vary among the compounds, with some KS compounds 
showing improved profiles compared to the native ligand. Respiratory toxicity is notably higher in several 
KS compounds, particularly KS1, KS17, and KS19, compared to the native ligand. These findings 
underscore the importance of carefully evaluating the excretion and toxicity profiles of potential drug 
candidates in comparison to the native ligand to optimize safety and efficacy in drug development. 
Environmental toxicity is a critical concern in the development of new compounds, as it directly impacts 
ecosystems and human health. The environmental toxicity profile of designed molecules provides crucial 
information about their potential effects on various organisms and the environment. In this study, we 
analyzed the environmental toxicity of 20 designed compounds (KS1-KS20) in comparison to the native 
ligand using parameters such as bioconcentration factor (BCF), IGC50, LC50FM, and LC50DM (Table 7). 
The results indicate that all designed compounds exhibited higher BCF values than the native ligand, 
suggesting increased potential for bioaccumulation. Compound KS4 showed the highest BCF value of 
1.998658, while KS17 and KS18 had the lowest values of 0.543772 and 0.542329, respectively. In terms 
of IGC50, all compounds demonstrated higher values compared to the native ligand, with KS16 having the 
highest value of 4.24241. The LC50FM and LC50DM values for the designed compounds were generally 
higher than the native ligand, indicating potentially lower acute toxicity. Notably, KS6 exhibited the 
highest LC50FM and LC50DM values of 5.184766 and 5.665054, respectively. Overall, while the designed 
compounds showed improved environmental toxicity profiles in some aspects, their higher BCF values 
suggest the need for further optimization to reduce bioaccumulation potential. 
 

Table 6: Excretion and Toxicity parameters of selected compounds 

Com
pounds 

Excretion Toxicity 

CL-plasm
a 

T1/2 

H
-H

T
 

D
ILI 

Am
es Toxicity 

Rat O
ral 

Acute 
Toxicity 

FD
AM

D
D

 

Skin 
Sensitization 

Carcinogenicity 

Eye Corrosion 

Eye Irritation 

Respiratory 
Toxicity 

Native 
Ligand 

0.8936
93 

3.2674
66 

0.0223
24 

0.9999
96 

0.2565
49 

0.0358
18 

0.9138
15 

0.9999
07 

0.0300
98 

2.44E-
07 

0.0926
2 

0.8480
13 

KS1 6.7813
41 

0.7931
49 

0.8493
5 

0.9784
81 

0.8628
9 

0.7443
42 

0.6414
6 

0.9350
41 

0.9671
51 

0.0320
2 

0.9810
47 

0.8535
17 

KS2 6.1460
72 

0.5126
71 

0.8231
52 

0.9933
27 

0.7484
14 

0.5743
78 

0.5880
19 

0.5656
84 

0.9338
96 

0.0057
44 

0.9591 0.5310
96 

KS3 5.1859
52 

0.6088
81 

0.8597
74 

0.9995
71 

0.9653
64 

0.6569
37 

0.6823
79 

0.9177
69 

0.9553
22 

0.0088
99 

0.9890
49 

0.7611
02 

KS4 4.9654
66 

0.6292
5 

0.7768
35 

0.9970
3 

0.5374 0.6555
23 

0.7958
68 

0.7209
1 

0.9311
27 

0.0083
53 

0.9699
06 

0.4096
75 

KS5 6.0913
16 

0.4844
62 

0.8272
75 

0.9866
19 

0.7832
23 

0.6973
93 

0.7318
83 

0.3124
9 

0.9490
9 

0.0142
74 

0.9609
22 

0.5837
91 

KS6 5.8851
47 

0.4984
79 

0.8198
45 

0.9965
84 

0.6053
12 

0.5999
07 

0.5957
24 

0.6111
96 

0.9205
32 

0.0034
96 

0.8921
42 

0.4239
24 

KS7 6.1808
48 

0.4607
63 

0.8245
13 

0.9922
06 

0.7342
86 

0.5168
88 

0.5777
61 

0.5771
91 

0.9374
5 

0.0084
72 

0.9631
75 

0.5234
27 

KS8 7.4664
88 

0.4566
04 

0.7658
38 

0.9928
7 

0.7781
74 

0.4956
52 

0.5773
64 

0.3531
47 

0.9457
06 

0.0077
7 

0.9515
4 

0.6394
33 

KS9 6.8265
16 

0.7317
52 

0.7918
91 

0.9856
99 

0.7250
02 

0.5584
06 

0.6686
8 

0.5864
2 

0.9361
38 

0.0054
47 

0.9749
7 

0.5230
96 
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KS10 5.6527
82 

0.5923
89 

0.8479
82 

0.9993
66 

0.9409
42 

0.6812
19 

0.6626
68 

0.8885
59 

0.9375
27 

0.0136
07 

0.9873
44 

0.7136
34 

KS11 6.8105
33 

0.5753
78 

0.8056
11 

0.9825
5 

0.7524
77 

0.5605
35 

0.6615
94 

0.5908
44 

0.9337
51 

0.0067
45 

0.9724
23 

0.5586
27 

KS12 9.5701
57 

1.1579
32 

0.6377
23 

0.9856
29 

0.7428
63 

0.5692
15 

0.6692
07 

0.9658
2 

0.8431
89 

0.0232
37 

0.9840
06 

0.4816
26 

KS13 4.5298
71 

0.8780
19 

0.7486
94 

0.9785
32 

0.7323
49 

0.5325
35 

0.5807
92 

0.5524
69 

0.9214
49 

0.0081
44 

0.9629
62 

0.6212
23 

KS14 6.7106
25 

0.4205
41 

0.7630
05 

0.9881
28 

0.7183
09 

0.5825
51 

0.5223
65 

0.3955
01 

0.9283
44 

0.0086
47 

0.9507
76 

0.5542
37 

KS15 6.7793
79 

0.5261
39 

0.6974
54 

0.9305
78 

0.5841
1 

0.5580
99 

0.5531
55 

0.2744
85 

0.7267
25 

0.0200
74 

0.9562
33 

0.5392
48 

KS16 5.9050
82 

0.4694
6 

0.8264
21 

0.9958
02 

0.8375
21 

0.6276
83 

0.6438
76 

0.3484
35 

0.9438
55 

0.0010
31 

0.9365
39 

0.6160
58 

KS17 4.8416
94 

0.7585
71 

0.7288
09 

0.9998
59 

0.9877
29 

0.7697
61 

0.6647
87 

0.9729
04 

0.9370
91 

0.0104
55 

0.9915
54 

0.8583
71 

KS18 3.4539
85 

0.7861
91 

0.9014
19 

0.9996
3 

0.6214
06 

0.5492
78 

0.6324
46 

0.1864
02 

0.9319
27 

0.0003
41 

0.7396
42 

0.2308
79 

KS19 7.3783
26 

0.4332
31 

0.8055
25 

0.9918
38 

0.8816
15 

0.6112
76 

0.5232
93 

0.4831
67 

0.9818
61 

0.0077
8 

0.9901
21 

0.8934
25 

KS20 8.0965
8 

0.5410
95 

0.8776 0.9813
07 

0.4825
91 

0.6440
83 

0.8395
43 

0.2043
67 

0.7790
2 

0.0034
91 

0.9506
85 

0.7058
42 

 
Table 7: Environmental toxicity profile of designed molecules 
Compounds BCF IGC50 LC50FM LC50DM 

Native Ligand -0.06387 2.210011 3.464563 4.224978 
KS1 0.542693 3.110102 3.763392 4.179127 
KS2 1.402684 3.899751 4.574273 4.745016 
KS3 1.234551 3.904871 4.543917 4.854049 
KS4 1.998658 4.077265 4.950452 5.501178 
KS5 1.731145 3.672688 4.517727 4.8337 
KS6 1.93845 4.174317 5.184766 5.665054 
KS7 1.483676 3.882654 4.541303 4.689673 
KS8 1.410315 3.947808 4.749408 5.155346 
KS9 1.189976 3.820802 4.328552 4.564439 
KS10 1.153493 3.813253 4.50124 4.730954 
KS11 1.047295 3.691037 4.365068 4.565676 
KS12 0.667819 3.354108 4.125006 4.318532 
KS13 0.85866 3.520729 4.155304 4.450401 
KS14 1.103495 3.726364 4.368136 4.521181 
KS15 1.563883 3.868277 4.62389 4.813891 
KS16 1.772676 4.24241 4.994954 4.929602 
KS17 0.543772 4.121836 4.989141 4.84718 
KS18 0.542329 3.192695 4.096134 4.442003 
KS19 1.065749 3.667398 4.385997 4.693248 
KS20 1.963538 3.81022 4.803782 5.347873 
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Table 8: ADMET radar of all selected compounds with native ligand 

 
KS1  

KS2 

 
KS3  

KS4 

 
KS5  

KS6 
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KS7 

 
KS8 

 
KS9 

 
KS10 

 
KS11 

 
KS12 
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KS13 

 
KS14 

 
KS15 

 
KS16 

 
KS17 

 
KS18 
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KS19 

 
KS20 

 
NL 

 
Molecular Docking 
Molecular docking is a computational method used to predict the binding orientation and affinity of small 
molecules to their target proteins. This technique is widely employed in drug discovery and development 
processes to screen potential drug candidates and understand their interactions with biological targets. In 
this study, molecular docking was utilized to evaluate N-ethylidene-4-(furan-2-yl)oxazol-2-amine 
derivatives as potential inhibitors of MurG-glycosyltransferase, an enzyme crucial for bacterial cell wall 
biosynthesis. Table 9 presents the docking scores and ligand energies of selected compounds (KS1-KS20) 
and the native ligand (NL). The docking score represents the binding affinity of the ligand to the target 
protein, with more negative values indicating stronger binding. The ligand energy reflects the internal 
energy of the compound in its docked conformation. Among the tested compounds, KS16 exhibited the 
most favorable docking score of -8.9 kcal/mol, surpassing the native ligand (-7.8 kcal/mol). This suggests 
that KS16 may have a higher binding affinity for the MurG-glycosyltransferase target compared to the 
native ligand. Other compounds showing promising docking scores include KS20 (-8.4 kcal/mol), KS10 (-
7.9 kcal/mol), and KS15, KS7, KS3, and KS19 (all at -7.8 kcal/mol), which are comparable to or better than 
the native ligand. The ligand energies of the compounds vary, with KS18 having the highest value 
(779.02) and KS4 the lowest (461.5). However, it is important to note that the ligand energy alone does 
not determine the binding affinity, as evidenced by the lack of direct correlation between ligand energy 
and docking score. 
Table 10 provides detailed information on the docking interactions of the most potent compounds (KS3, 
KS7, KS10, KS15, KS16, KS18, KS19, and KS20) and the native ligand (NL) with the target protein (1NLM). 
The interactions are categorized by amino acid residues, bond lengths, bond types, and bond categories. 
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The molecular docking analysis revealed detailed interactions between various compounds and the 
MurG-glycosyltransferase enzyme. NL, the reference compound, formed electrostatic and hydrogen bond 
interactions with GLU269, as well as hydrophobic interactions with PHE21 and ARG164. KS3 and KS7 
exhibited similar binding patterns, forming salt bridges and attractive charge interactions with GLU269, 
along with pi-anion interactions. These compounds also engaged in hydrophobic interactions with 
ARG164, PHE21, PHE244, and other residues. KS10 showed a combination of electrostatic, hydrogen 
bond, and hydrophobic interactions, particularly with GLU269, PRO162, and PHE244. KS15, KS16, KS18, 
and KS19 all demonstrated strong interactions with GLU269 through salt bridges and attractive charge 
interactions, as well as pi-anion interactions. These compounds also formed various hydrophobic 
interactions with residues such as PHE21, PHE244, and VAL189. KS20 exhibited a unique interaction 
profile, forming hydrogen bonds and halogen interactions with ARG164 and PHE21, in addition to the 
common interactions with GLU269 and other residues. Overall, these compounds showed promising 
binding affinities and interaction patterns with the target enzyme, suggesting their potential as MurG-
glycosyltransferase inhibitors for bacterial infections. Table 11 illustrated the 2D and 3D poses of most 
potent compound and NL with MurG-glycosyltransferase enzyme (PDB ID: 1NLM). 

 
Table 9: Docking score and ligand energy of selected compounds and NL. 

Compound Code 
Ligand Energy Docking Score 

(Kcal/mol) 
NL 4837.82 -7.8 
KS1 466.16 -6.7 
KS2 462.2 -7.1 
KS3 477.35 -7.8 
KS4 461.5 -7.5 
KS5 462.86 -7.4 
KS6 461.48 -7.5 
KS7 462.15 -7.8 
KS8 477.19 -7.4 
KS9 462.19 -7.2 

KS10 483.24 -7.9 
KS11 464.84 -7.5 
KS12 477.55 -7.5 
KS13 483.42 -7.5 
KS14 556.58 -7.1 
KS15 462.94 -7.8 
KS16 510.73 -8.9 
KS17 558.47 -7.7 
KS18 779.02 -7.8 
KS19 482.03 -7.8 
KS20 470.84 -8.4 

Table 10: Docking interactions of most potent compounds and NL with 1NLM 
Amino acid 

residues 
Bond Length Bond Type Bond Category 

NL-1NLM 
GLU269 5.1333 Electrostatic Attractive Charge 
GLU269 2.88199 Hydrogen Bond Conventional Hydrogen Bond 
PRO162 2.90361 

THR266 3.42056 Carbon Hydrogen Bond 

GLY191 3.51309 

PHE21 4.34668 Electrostatic Pi-Cation 

PHE21 4.96359 Hydrophobic Pi-Pi Stacked 
ARG164 4.11256 Pi-Alkyl 

KS3 
GLU269 2.70038 Hydrogen Bond; 

Electrostatic 
Salt Bridge; Attractive Charge 

GLU269 4.50194 Electrostatic Pi-Anion 
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ARG164 3.74574 Hydrophobic Pi-Sigma 

PHE244 4.74686 Pi-Pi Stacked 

PHE21 4.71103 

MET248 4.79498 Pi-Alkyl 

LEU265 5.24707 

KS7 

GLU269 2.60614 Hydrogen Bond; 
Electrostatic 

Salt Bridge; Attractive Charge 

GLU269 4.44894 Electrostatic Pi-Anion 
ARG164 3.68444 Hydrophobic Pi-Sigma 
PHE21 4.66506 Pi-Pi Stacked 

PHE244 4.92723 
ALA25 4.02828 Alkyl 

ARG164 4.93188 
LEU265 5.46256 Pi-Alkyl 
VAL189 5.4894 
MET248 4.88414 

KS10 

GLU269 3.06049 Electrostatic Attractive Charge 

PRO162 3.27605 Hydrogen Bond Conventional Hydrogen Bond 
PRO162 2.52232 
THR266 3.57298 Carbon Hydrogen Bond 
GLN218 3.79359 
GLU269 4.39374 Electrostatic Pi-Anion 
ARG164 3.70347 Hydrophobic Pi-Sigma 
PHE244 4.80375 Pi-Pi Stacked 
PHE21 4.53102 

VAL189 5.47058 Pi-Alkyl 
MET248 4.83901 

KS15 
GLU269 1.97751 Hydrogen Bond; 

Electrostatic 
Salt Bridge; Attractive Charge 

GLN218 3.46855 Hydrogen Bond Carbon Hydrogen Bond 
GLU269 4.02264 Electrostatic Pi-Anion 
PHE21 3.5662 Hydrophobic Pi-Sigma 
PHE21 5.38628 Pi-Pi Stacked 

PHE244 4.55914 
:ALA25 5.1166 Pi-Alkyl 
ARG164 4.38726 
VAL189 5.27928 
MET248 4.70863 

KS16 

GLU269 2.30732 Hydrogen Bond; 
Electrostatic 

Salt Bridge; Attractive Charge 

GLU269 4.51738 Electrostatic Pi-Anion 
ARG164 3.7293 Hydrophobic Pi-Sigma 
PHE244 4.88661 Pi-Pi Stacked 

PHE21 4.82901 
PHE21 4.04135 

VAL189 5.45568 Pi-Alkyl 
MET248 4.87197 
LEU265 5.16123 
ARG164 4.74366 

KS18 
GLU269 3.18888 Electrostatic Attractive Charge 
GLN218 3.51191 Hydrogen Bond Carbon Hydrogen Bond 
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GLU269 4.26894 Electrostatic Pi-Anion 
ARG164 3.81627 Hydrophobic Pi-Sigma 
PHE244 4.55843 Pi-Pi Stacked 
PHE21 4.4009 

VAL189 5.34947 Pi-Alkyl 
MET248 4.80788 

KS19 
GLU269 2.30704 Hydrogen Bond; 

Electrostatic 
Salt Bridge; Attractive Charge 

GLN218 3.56026 Hydrogen Bond Carbon Hydrogen Bond 
PRO162 3.54758 
GLU269 4.85389 Electrostatic Pi-Anion 
ARG164 3.79236 Hydrophobic Pi-Sigma 
PHE244 4.51773 Pi-Pi Stacked 
PHE21 4.59164 

VAL189 5.41988 Pi-Alkyl 
MET248 4.79206 
LEU265 5.31676 

KS20 
GLU269 2.81014 Hydrogen Bond; 

Electrostatic 
Salt Bridge; Attractive Charge 

THR266 3.52339 Hydrogen Bond Carbon Hydrogen Bond 

ARG164 3.29576 Hydrogen Bond; Halogen Carbon Hydrogen Bond; Halogen 
(Fluorine) 

PHE21 3.12844 Halogen Halogen (Fluorine) 
PHE21 3.06425 

GLU269 4.32107 Electrostatic Pi-Anion 
ARG164 3.71083 Hydrophobic Pi-Sigma 
PHE244 4.86575 Pi-Pi Stacked 
PHE21 4.55599 
ALA25 4.19897 Alkyl 

ARG164 4.99538 

VAL189 5.44909 Pi-Alkyl 

MET248 4.85212 

 
Table 11: 2D and 3D docking interactions of NL and most potent compounds. 

2D Interactions 3D Interactions 
NL 

 
KS3 
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KS7 

 

KS10 

  
KS15 

  
KS16 



 
 
       

ABR Vol 16 [5] September 2025                                                                    83 | P a g e                        © 2025 Author 

  
KS18 

 

KS19 

 

 
KS20 

 

 
CONCLUSION 
The present in silico investigation highlights the potential of N-ethylidene-4-(furan-2-yl)oxazol-2-amine 
derivatives as promising MurG-glycosyltransferase inhibitors for combating bacterial infections. 
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Antimicrobial resistance continues to present a major global challenge, and targeting MurG—a critical 
enzyme in peptidoglycan biosynthesis—offers an innovative therapeutic strategy, given its essential role 
in bacterial cell wall formation and absence in human pathways. ADMET profiling revealed that several 
designed derivatives exhibited improved drug-likeness, oral bioavailability, and pharmacokinetic 
properties compared to the native ligand, while also satisfying important medicinal chemistry rules. 
Compounds such as KS7, KS8, KS12, KS16, and KS20 demonstrated favorable absorption and distribution 
profiles, suggesting enhanced potential for systemic activity. Molecular docking further validated their 
inhibitory potential, with KS16 showing the most favorable docking score (-8.9 kcal/mol), followed by 
KS20, KS10, and KS15, all surpassing or matching the native ligand in binding affinity. Detailed interaction 
analyses confirmed that these compounds engaged in stable hydrogen bonding, electrostatic, and 
hydrophobic interactions with key active-site residues, particularly GLU269, ARG164, and PHE21. 
Collectively, the computational evidence underscores the potential of these derivatives as lead scaffolds 
for the development of next-generation antibacterial agents. However, further experimental validation is 
necessary to confirm their efficacy and safety for clinical applications. 
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