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ABSTRACT 

An image compression scheme based on iterated transforms has been presented in this chapter. Results are examined as 
a function of several encoding parameters including maximum allowed scale factor, number of domains, and resolution 
of scale and offset values, minimum range size, and target fidelity. The performance of the algorithm, evaluated by 
means of fidelity versus the amount of compression, is compared with an adaptive discrete cosine transform image 
compression method over a wide range of compressions.  
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INTRODUCTION  
Because of the increasing use of digital imagery, there is currently considerable interest in the image 
compression problem. This interest has led to the establishment by the Joint Photographic Experts Group 
of an image compression standard based on discrete cosine transforms. Although the use of this standard 
is becoming common, there are alternative methods for compressing images. One such alternative, 
iterated transformations, has been presented by Jacquin [6-8]. This method has its foundation in the 
theory of iterated function systems (IFSs), developed by Hutchinson [5] and Barnsley [1], and recurrent 
iterated function systems (RIFS) [2] For a description of the basic iterated transform method, refer to [6-
8] This method has been extended to include individual transforms which are not contractive [4] Because 
this is a relatively new method, little information is currently available on its performance. In writing 
even a simple iterated transform encoder, there are a host of parameters which can be varied. Currently, 
there is no information available on the dependence of system performance on such parameters. The 
purpose of this paper is to present results on the dependence of compression, fidelity and encoding time, 
on several pertinent system parameters. For the purpose of defining the parameters of interest in this 
paper, a brief summary of the method is presented in the following paragraphs. A more detailed 
description of the method in the notation used in this correspondence, and a description of the basic 
implementation used here can be found in [4]. Moustafa and Alsayyh [10] suggested a new hybrid image 
compression technique. Three transform-based techniques discrete Fourier transform (DFT), discrete 
wavelet transform (DWT), and discrete cosine transform (DCT) have been combined for image 
compression to confer the good char- acteristics of these methods. The proposed method works for 
forfeiture compression and the attained results show that it works well compared to existing approaches. 
To test the level of compression, the quantitative measures of the peak signal-to-noise ratio (PSNR) & 
mean squared error (MSE) are used to ensure the effectiveness of the suggested system.  In domain of 
image processing; image compression is highly demanded due to the fast advancement of 
communications, computer, and internet technology [11-14]. 
 
THEORETICAL BACKGROUND 
The image is encoded in the form of an iterative system (a space and a map from the space to itself) 

:W F F . The space F  is a complete metric space of images, and the mapping W (or some iterate 

of W ) is a contraction. The contractive mapping fixed point theorem ensures convergence to a fixed 
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point upon iteration of W . The goal is to construct the mapping W with fixed point 'close' (based on a 

properly chosen metric ( , )f g ) to a given image that is to be encoded, and such that W  can be stored 

compactly. The collage theorem provides motivation that a good mapping can be found [1]. Decoding then 
consists of iterating the mapping W from any initial image until the iterates converge to the fixed point. 

Let [0,1]I   and 
mI  be the m -fold Cartesian product of I with itself. Let F be the space consisting 

of all graphs of real Lebesgue measurable functions ( , )z f x y  with
3( , , ( , ))x y f x y I . Let 

1 2 3, , ,... nD D D D  and 1 2 3, , ,..., nR R R R  be subsets of 
2I  and 

3 3
1 2 3, , ,..., :nv v v v I I  be some 

collection of maps. 

 Define 
i

i i D I
w v


   

The maps 1 2, ,..., nw w w  are said to tile 
2I  if for all f F , 1 ( )n

i iw f F   

This means the following: for any image f F , each iD  defines a part of image ( )if D I   to 

which iw  is restricted. When iw  is applied to this part, the result must be a graph of this function over

iR , and 
2

1
n
i iI R  . This is illustrated in Fig. 1. This means that the union 1 ( )n

i iw f yields a graph 

of a function over 
2I , and the set 'iR s are disjoint. The map W is defined as    

 1
n
i iW R   … (1) 

Since the goal is to limit the memory required to specify W , 
2I  is partitioned by geometrically simple 

sets  iR with 
2

1
n
i iI R  . For each iR , 

2
iD I  and 

3:i iw D I I   is sought such that 

( )iw f is as  close to  

 ( ), ( )i if R I w f   …(2) 

is minimized. The motivation for minimizing expression (2) is provided by the collage theorem [1]. Those 

initiated to IFS theory may find it surprising that when the transformations iw  are constructed, it is not 

necessary to impose any contractivity conditions on the individual transforms. The necessary 

contractivity requirement is that W be eventually contractive [4]. A map :W F F  is eventually 

contractive if there exists a positive integer m  such that the 
thm  iterate of 

0( )mW W  W is contractive 

(as measured by an appropriate metric). All contractive maps are eventually contractive, but not vice 

versa. A brief explanation of how a transformation :W F F  can be eventually contractive but not 

contractive is in order. The map W  is composed of a union of maps iw  operating on disjoint parts of an 

image. If any of the W , are not contractive, then W will also not be contractive. The iterated transform
0mW  is composed of a union of compositions of the form 

21 ...
ii imw w w   Since the product of the 

contractivities bounds the contractivity of the compositions, the compositions may be contractive if each 

contains sufficiently contractive ijw . Thus W  will be eventually contractive if it contains sufficient 

'mixing' so that the contractive w, eventually dominate the expansive ones. 
Implementation- 

For 256 256  pixel 8 bit per pixel (bpp) images the model was scaled to

[0,255] [0,0255] [0,255]  .  
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 For other image sizes, appropriate scaling can be employed). To limit the memory required to 

specify iw , only maps of the  

 

0

0

0 0

i i i

i i i i

x a b x e

w y c d y f

z s z o

      
       
      
            

form are considered, where W , is restricted to

pixel coordinates, and z  represents the pixel intensity. The pixel intensities are clipped when

outside the allowed intensity range. For the transformation

must be compactly specified. This can be done by choosing

candidates. Also, many of the computations are simplified if 

be the collection of subsets of 
2I

of 
2I   from which the iD are chosen. The set 

32 32  no overlapping sub squares of

upper left corners at integer multiples of 

and 64 64 subsquares with sides parallel to or slanted at 

image. Although the 'iD s  and 

terminology will be used because it is descriptive. Domain squares of size

corners on a lattice with vertical and horizontal 

is clear then that the size and position of 

and which one of the eight possible symmetries (rotation and flip operator 

onto another, uniquely define the coefficients 

domains with side length twice that of the range are allowed, resulting in contraction in

Therefore, each range pixel corresponds to a two by two pixel area in the corresponding domain. The 
average of the four domain pixel intensities are mapped to the area of the range pixel when computing

( )iw f . When iD  is oriented at 45°, the averaging of pixels is more complicated, the details of which are 

not very significant. What is significant is that the method for averaging pixels in the encoding and 

decoding procedures is consistent. Insisting that
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Fig.-1: Parts of the tiling of an image 
For other image sizes, appropriate scaling can be employed). To limit the memory required to 

0

0

0 0

i i i

i i i i

i i

x a b x e

w y c d y f

z s z o

      
       
      
            

 

W , is restricted to iD I   In terms of an image, x

represents the pixel intensity. The pixel intensities are clipped when

outside the allowed intensity range. For the transformation iw  to be compactly specified,

must be compactly specified. This can be done by choosing iR  and iD  from a small set of potential 

candidates. Also, many of the computations are simplified if iR and iD  are geometrically simple. Let 

2I  from which the R , are chosen, and let D  be the collection of subsets 

are chosen. The set R  was chosen to consist of4 4,8 8,16 16  

no overlapping sub squares of[0,255] [0,0255]  (i.e, squares of size 

upper left corners at integer multiples of s ). The collection D  consisted of 8 8,16 16,32 32  

subsquares with sides parallel to or slanted at 
045 angles from the natural edges of the 

D s and 'iR s  are not strictly the domains and ranges of the 

terminology will be used because it is descriptive. Domain squares of size s s   were restricted to have 

corners on a lattice with vertical and horizontal spacing of / 2s , This choice of D

is clear then that the size and position of R , the size, position and orientation (i.e. 

and which one of the eight possible symmetries (rotation and flip operator iv  ) for mapping one square 

onto another, uniquely define the coefficients , , , ,i i i i ia b c d e  and if in (3). In this implementation, only 

domains with side length twice that of the range are allowed, resulting in contraction in

Therefore, each range pixel corresponds to a two by two pixel area in the corresponding domain. The 
average of the four domain pixel intensities are mapped to the area of the range pixel when computing

is oriented at 45°, the averaging of pixels is more complicated, the details of which are 

not very significant. What is significant is that the method for averaging pixels in the encoding and 

s consistent. Insisting that iw , map (the graph above) D , to (a graph above) 
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x and y  represent the 

represents the pixel intensity. The pixel intensities are clipped whenW , maps 

to be compactly specified,R , and iD  

from a small set of potential 

are geometrically simple. Let R  

be the collection of subsets 

4 4,8 8,16 16   and 

(i.e, squares of size s s  have their 

8 8,16 16,32 32  

angles from the natural edges of the 

are not strictly the domains and ranges of the 'iw s . The 

s s were restricted to have 

D  will be called D . It 

, the size, position and orientation (i.e. 
00  or 

045 ) of iD , 

) for mapping one square 

in (3). In this implementation, only 

domains with side length twice that of the range are allowed, resulting in contraction in the xy  plane. 

Therefore, each range pixel corresponds to a two by two pixel area in the corresponding domain. The 
average of the four domain pixel intensities are mapped to the area of the range pixel when computing

is oriented at 45°, the averaging of pixels is more complicated, the details of which are 

not very significant. What is significant is that the method for averaging pixels in the encoding and 

D , to (a graph above) R , 
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while minimizing expression (ii) determines is  and io . In this way iw  is determined uniquely for a 

chosen metric. In this chapter, the root mean square (rms) error rms was chosen as the metric. For 

further comment on this choice of the metric, see [4]. Because is and io  must be stored with a fixed 

number of bits ( sn  and rn  respectively), they must be discretized. The values for is  were restricted to 

the range max max/10is s s   and 0is  . Where maxs  was the maximum allowable is . The 

distribution of the discretized 'is s  was chosen such that any desired scale factor could be represented 

within some fixed percentage (i.e. a logarithmic scale). The minimum and maximum possible values for o; 

are restricted by the value of the corresponding is . Given 0n the discretized values for io  were 

distributed linearly over this interval. Only the discretized values of is  and io  are used when calculating 

the values of is  and io which minimizes expression (ii). Once the choice of R and D  has been made, 

the encoding problem is reduced to choosing a set  iR R  and the corresponding set  iD D  

such that good compression and an accurate encoding of the image results. To take advantage of local 
`flatness' in the image and to reduce the error in regions of high variability, a recursive quadtree 
partitioning method was used to allow the range squares to vary in size. The method used to find the 

'iD s  determines how much computation time the encoding takes. A search through all of D  would 

clearly result in the choice that would best minimize expression (ii), but for applications for which 
encoding time is a consideration; such a search may require too much computation time. Therefore a 
classification scheme was used to reduce the amount of computation needed to find a good covering. The 
strategy of the classification scheme is important, although the fine details of the implementation method 
are not critical. The following paragraph reviews the important aspects of the classification scheme used. 
The classification scheme used was based on the simple ideas that good covers would have matching 
regions of bright and dark and that any strong edges (variations in intensity) should also match. The 
classification scheme in [6] was generally based on these ideas. The classification scheme began by 
computing the average intensity for each quadrant of the (range or domain) square. Then a symmetry 
operation was applied to force the square into an orientation with its brightest quadrant in the upper left 
quadrant, and to put the second brightest quadrant into the upper right quadrant (or the third brightest if 
the second brightest could not be so oriented). This process divided the squares into three main classes 
(and defined a symmetry operation for each square). Each of these three main classes was then 
subdivided by determining the amount of the variation of the average brightness of the sub-quadrants for 
each quadrant of the square. The quadrants of the square were thereby ordered from first to fourth by the 
amount of variation within each quadrant. There are 24 possible permutations for the order of the 
relative brightness variations. This results in a total number of 72 classes. The symmetry operations 

determined in this classification for a given iR  and iD  defined the rotation and flip operation iv for 

mapping iD to iR  further increasing the time saved during encoding. The encoding process proceeded 

as follows. Initially, the range squares R; were chosen to be 64 subsquares of size 32 x 32. The first 32 x 
32 range square was classified using the same classification procedure as the domains. A search was then 
performed for the domain square (with side length twice that of the range square) in the same class (or 
similar classes) which best minimized expression (ii). If this best domain square and its corresponding w 

resulted in an error (given by expression (ii)) less than a predetermined tolerance ce , w  (and D ) was 

stored and the process was repeated for the next range square. If the predetermined tolerance was not 
satisfied, the range square was subdivided into four equal squares. This quadtreeing process was 
repeated until the tolerance condition was satisfied, or a range square of a predetermined minimum size 

minr  was reached. For range squares of size minr , the best w  was stored whether or not ce  was 

satisfied. The process was continued until the entire image was encoded. The average storage 
requirement for a single w was about 30 bits, and was dependent on several factors. The rotation and flip 
operator v, required 3 bits, and for most encodings presented here n, and n o were stored with a total of 
12 bits. The position 
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Of iR  was inferred from the ordering. Approximately 15 bits were required to identify the size of iR and 

the location (and orientation) of iD , this number being dependent on both the choice of D  and the level 

in the quadtree. When 0is   only io  and the size of iR are required, so the transformation can be 

stored more compactly. The compressions quoted in this paper were computed from the actual size of the 
compressed data files.  
Clearly this encoding method has many parameters which influence the compression, accuracy and speed 
of the encoding. How these parameters effect the encoding is not a priori obvious. The following 
discussion will consider how varying the number of possible domains effects the encoding accuracy, 

compression and speed. The following assumes that one encoding, call it W  , uses a given set of possible 

domains D , while the other W  uses a domain set D  such that D D  . First, it is clear that for 

any given range square, the best covering (in the sense of minimizing expression (ii)) from D  must be 

as good as or better than the best covering taken from D . However, this does not guarantee an 
improved encoding within the quad tree method. It is possible that some large range which was 

subdivided in W   (and then covered very well) will not be subdivided in W  , resulting in a less 

accurate encoding. Second, sinceD  contains D , the individual iw   transforms of W   require more 

bits to store than the 'iw s  of W  . However, this does not mean that W   must have a poorer 

compression than W  . If a large block is covered, rather than subdivided, then only one transform 

(instead of at least four) needs to be stored, resulting in a net savings in the total number of required bits. 

Finally, although the construction of W   requires searching through a bigger domain pool than the 

construction of W  , it does not follow that the encoding process must take more time. When a large 

block is covered the four smaller ranges do not need to be covered, thus saving time. This paper describes 
the dependence of the performance of the encoding scheme on the following parameters : (1) the number 

of bits used to store the scale factor ( sn ) and offset ( on ), (2) the maximum  allowed is  ( maxs )s, (3) the 

number of possible domains, (4) the criterion used to decide if a covering is acceptable ( ce ) (5) the 

minimum range size in the quadtree subdivision ( minr ), and (6) the number of domain classes searched (

cn ). It is not obvious how adjusting these parameters effects the performance of the encoding method, 

since for each of these parameters it is possible to construct arguments similar to that given previously 
for the total number of possible domains. 
Before presenting results, a tutorial example is given to better illustrate how the method works. Let 

values of 0z   be represented as black, 1z   as white, with intermediate values as shades of gray. 

Consider the image in Fig. 2, and the sixteen transformations given in Table 1, where the first eight 

transformations are restricted to act on the region 
1 1

( , ) : 0 ,0
2 2

x y x y
 

    
 

 and the second 

eight transformations are restricted to act on the region 
1 1

( , ) : 1,0
2 2

x y x y
 

    
 

.  The map 

W is defined as the union of these 16 'iw s and encodes the image shown. This can be easily 

demonstrated. The staring point of the iteration is arbitrarily chosen as 0.5z  for 

 ( , ) : 0 1,0 1x y x y    .  
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Table-1: A set of 16 
a  b  

0.5 0.0 0.0
0.5 0.0 0.0
0.5 0.0 0.0
0.5 0.0 0.0
0.5 0.0 0.0
0.5 0.0 0.0
0.5 0.0 0.0
0.5 0.0 0.0
0.0 -0.5 0.5
0.0 -0.5 0.5
0.0 -0.5 0.5
0.0 -0.5 0.5
0.0 -0.5 0.5

0.0 -0.5 0.5
0.0 -0.5 0.5
0.0 -0.5 0.5

  
The first six iterates, and the fixed point is shown in Fig. 3. In practice, the values 

discretized. When the image in this example is discretized as 

encoder described in this chapter automatically encodes this image (using an equivalent set of 16 

transformations) with the result

encoding. The encoder, when constrained to have

image, with a resulting compression of less than 10: 1.
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Fig.-2: A gray scale image 

1: A set of 16 transformations that encode the image in Fig.2
c  d  s  e  f  

0.0 0.5 2.0 0.75 0.0 
0.0 0.5 2.0 0.75 0.25 
0.0 0.5 2.0 0.50 0.0 
0.0 0.5 2.0 0.50 0.25 
0.0 0.5 2.0 0.0 0.5 
0.0 0.5 2.0 0.0 0.75 
0.0 0.5 2.0 0.25 0.5 
0.0 0.5 2.0 0.25 0.75 
0.5 0.0 0.25 0.25 -0.25 
0.5 0.0 0.25 0.25 0.0 
0.5 0.0 0.25 0.5 -0.25 
0.5 0.0 0.25 0.5 0.0 
0.5 0.0 0.25 0.75 0.25 

0.5 0.0 0.25 0.75 0.5 
0.5 0.0 0.25 1.0 0.25 
0.5 0.0 0.25 1.0 0.5 

The first six iterates, and the fixed point is shown in Fig. 3. In practice, the values 

discretized. When the image in this example is discretized as 128 128 pixels, and 8 bits per pixel, the 

encoder described in this chapter automatically encodes this image (using an equivalent set of 16 

transformations) with the resulting compression equal to 356:1. Note that maxs

encoding. The encoder, when constrained to have 1is  , requires 520 transformations to encode this 

image, with a resulting compression of less than 10: 1. 
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transformations that encode the image in Fig.2 

f  o  

 0.0 
 0.0 

 0.0 
 0.0 

 0.0 
 0.0 

 0.0 
 0.0 
 0.0 

 0.25 
 0.25 

 0.0 
 0.0 

 0.25 
 0.25 

 0.0 

The first six iterates, and the fixed point is shown in Fig. 3. In practice, the values ,x y and z are 

pixels, and 8 bits per pixel, the 

encoder described in this chapter automatically encodes this image (using an equivalent set of 16 

max 2.0s  sma for this 

, requires 520 transformations to encode this 
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Fig.-3: The initial image, the first six iterations and the fixed point for the map composed of the 16 

 
RESULTS  
The peak-signal-to-noise ratio (PSNR) was used to determine image fidelity. PSNR is defined as 

 1020logPSNR
 

   
 

where rms  is the root mean square error of the reconstructed image and  

pixel of the image.  

Fig. 4. PSNR versus compression as a function of 
and 8 are denoted by , , , 
connecting points with common n
respectively. 

Figure 4 shows PSNR versus compression as a function of

values for s  and o respectively. This data results from encodings of the 512×512 pixel resolution, 8

image of Lena. For these encodings, the ful
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3: The initial image, the first six iterations and the fixed point for the map composed of the 16 
transformations in Table-1 

noise ratio (PSNR) was used to determine image fidelity. PSNR is defined as 

1020log
2 1n

rms 
 

 
 

is the root mean square error of the reconstructed image and  n is the number of bits per 

Fig. 4. PSNR versus compression as a function of ns, and n0 for 512×512 Lena. The values of 
,  and , respectively. The values of ns are noted on the plot, the lines 

ns. Other parameters were D' and (rmin, smax, ec, nc) equal to (4, 1.0, 8.0, 4), 

Figure 4 shows PSNR versus compression as a function of sn  and on  the number of bits used to store 

respectively. This data results from encodings of the 512×512 pixel resolution, 8

image of Lena. For these encodings, the full set D' as described in Section 1 was used. The other 
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n is the number of bits per 
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are noted on the plot, the lines 
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parameters used for these encodings were: minimum range size of 4×4 pixels (

allowed scale factor set to 1.0 (

number of classes searched equal to 4 (

shown. The curves connect the data points with the same value of 

value of on . By connecting the similar symbols, one can visualize the c

Fig. 5. Relative number of si's at each allowed value for three encodings of 256×256 Lena. The value of 
for a, b and c were 2.0, 1.0 and 0.5, respectively. Other parameters were 
parameters the same as Fig. 4. 

Fig. 6. PSNR versus compression as a function of s
'tank farm', the curve at higher compression for 256 ×256 Lena. The values of s
and 2.0 are denoted by , , , 
same as Fig. 5. 
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parameters used for these encodings were: minimum range size of 4×4 pixels ( r

allowed scale factor set to 1.0 ( max 1.0s  ), root mean square error tolerance (

number of classes searched equal to 4 ( 4cn  ). Results for sn and  on equal to 3, 4, 5, 6, 7 and 8 are 

shown. The curves connect the data points with the same value of sn . The different symbols indicate the 

. By connecting the similar symbols, one can visualize the curves of constant 

 
at each allowed value for three encodings of 256×256 Lena. The value of 

for a, b and c were 2.0, 1.0 and 0.5, respectively. Other parameters were ns= 5, n

Fig. 6. PSNR versus compression as a function of smax. The curve at lower compression is for 256×256 
'tank farm', the curve at higher compression for 256 ×256 Lena. The values of smax

,  and  respectively. Other parameters were n
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min 4r  ), maximum 

erance ( ce ) set to 8.0, and 

equal to 3, 4, 5, 6, 7 and 8 are 

. The different symbols indicate the 

urves of constant on . 

at each allowed value for three encodings of 256×256 Lena. The value of smax 
= 5, n0 = 7, with other 

 
. The curve at lower compression is for 256×256 

max=0.5, 0.8, 1.0, 1.2, 1.5 
nc=72, with others the 
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The lack of contractivity condition on 

as high as 2.0 are presented. Fig. 5 shows the distribution of the scale factors used in three different 

encodings of 256 x 256 pixel resolution, 8

and 0.5 in Figs. 5(a), 5(b) and 5(c), respectively. Other parameters were 

parameters the same as in Fig. 4. In Fig. 6 PSNR ver

. The curve at lower compression in Fig. 6 is for the 

`tank farm' shown in Fig. 7(a). The decoded image for 

higher compression is for256 256

Fig. 7. (a) 256 x 256 8 bit/pixel original image of 'tank farm'. 7(b) Decoded image with s
image the compression is 5.96:1 and the PSNR is 30.98 dB.
Figure 8 shows PSNR versus compression as a function of the number of domains for 512×512 Lena. All 

the results in Fig. 8 used the parameters
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The lack of contractivity condition on is is reflected in Fig.5 and 6 where data form encodings with 

as high as 2.0 are presented. Fig. 5 shows the distribution of the scale factors used in three different 

encodings of 256 x 256 pixel resolution, 8-bpp Lena. The values of maxs  for these encodings were 2.0, 1.0 

and 0.5 in Figs. 5(a), 5(b) and 5(c), respectively. Other parameters were 5sN  ,

parameters the same as in Fig. 4. In Fig. 6 PSNR versus compression is plotted for different values of 

. The curve at lower compression in Fig. 6 is for the 256 256  pixel resolution, 8 bit per pixel image of 

`tank farm' shown in Fig. 7(a). The decoded image for max 1.2s   is shown in Fig. 7(b). The curve at 

256 256   Lena.  

 
Fig. 7. (a) 256 x 256 8 bit/pixel original image of 'tank farm'. 7(b) Decoded image with s

is 5.96:1 and the PSNR is 30.98 dB. 
Figure 8 shows PSNR versus compression as a function of the number of domains for 512×512 Lena. All 

the results in Fig. 8 used the parameters max min1.0, 4, 5, 7, 8.0s o cs r n n e    
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is reflected in Fig.5 and 6 where data form encodings with maxs
as high as 2.0 are presented. Fig. 5 shows the distribution of the scale factors used in three different 

for these encodings were 2.0, 1.0 

5 7on  with all other 

sus compression is plotted for different values of maxs

pixel resolution, 8 bit per pixel image of 

is shown in Fig. 7(b). The curve at 

Fig. 7. (a) 256 x 256 8 bit/pixel original image of 'tank farm'. 7(b) Decoded image with smax= 1.2. For this 

Figure 8 shows PSNR versus compression as a function of the number of domains for 512×512 Lena. All 

1.0, 4, 5, 7, 8.0s o cs r n n e     . The set 
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1/4D , with number of domains reduced by (approximately) a factor of four from the set
obtained by restricting the domains to have corners on a lattice with vertical and horizontal spacing of 

(as opposed to / 2s ).  

Fig. 8. PSNR versus compression as a function of the number of domains for encodings of 512 x 512 Lena. 
The sets D1, D1/2 and D1/4 and D1/8 

appear as the solid, dashed and dotted 
parameters the same as in Fig. 5. 
 

The set 
1/2D , with number of domains reduced by a factor of two from the set 

eliminating the domains with sides slanted at 
1/8D  was obtained by both restricting the lattice spacing and elim

mentioned in section 1, the domains were classified into 72 classes, and only a predetermined number of 

classes ( cn ) were searched during encoding. Therefore, increasing  

of possible domains. Figure 8 shows data

for each of the domain sets. The open symbols are for cases in which no diagonal domains are allowed
1/2D and

1/8D  ), while the solid symbols include diagonal domains (

domain lattice spacing of / 2s  (

and 
1/8D ). Finally, Fig. 9 shows PSNR versus compression data of 512 x 51

8.0,5.0,11.0ce  . The open symbols represent data for 

) and 72 ( ).  
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domains reduced by (approximately) a factor of four from the set
obtained by restricting the domains to have corners on a lattice with vertical and horizontal spacing of 

Fig. 8. PSNR versus compression as a function of the number of domains for encodings of 512 x 512 Lena. 
1/8 are denoted by , ,  and , respectively. Data for 

appear as the solid, dashed and dotted curves, respectively. Other parameters were 
 

, with number of domains reduced by a factor of two from the set D
eliminating the domains with sides slanted at 

045  angles from the natural edges of the image. The set 

was obtained by both restricting the lattice spacing and eliminating the diagonal domains. As 
mentioned in section 1, the domains were classified into 72 classes, and only a predetermined number of 

) were searched during encoding. Therefore, increasing  cn  effectively increased the number 

of possible domains. Figure 8 shows data 1cn    (connected by solid line), 4 (dashed) and 12 (dotted) 

for each of the domain sets. The open symbols are for cases in which no diagonal domains are allowed

), while the solid symbols include diagonal domains (
1D  and 

1/4D
/ 2 (

1D  and 
1/2D  ), while the squares indicate lattice spacing of 

). Finally, Fig. 9 shows PSNR versus compression data of 512 x 51

. The open symbols represent data for min 4r  . Data is shown 
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domains reduced by (approximately) a factor of four from the set
1D , was 

obtained by restricting the domains to have corners on a lattice with vertical and horizontal spacing of s  

 
Fig. 8. PSNR versus compression as a function of the number of domains for encodings of 512 x 512 Lena. 

Data for nc = 1, 4 and 12 
curves, respectively. Other parameters were smax = 1.0 with other 

1D , was obtained by 

angles from the natural edges of the image. The set 

inating the diagonal domains. As 
mentioned in section 1, the domains were classified into 72 classes, and only a predetermined number of 

effectively increased the number 

(connected by solid line), 4 (dashed) and 12 (dotted) 

for each of the domain sets. The open symbols are for cases in which no diagonal domains are allowed (
1/4D ). The circles indicate 

), while the squares indicate lattice spacing of s  (
1/4D  

). Finally, Fig. 9 shows PSNR versus compression data of 512 x 512 Lena for

. Data is shown for cn  =1 ( ), 4 (
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Fig. 9. PSNR versus compression as a function of e
rmin=4 and solid symbols rmin = 8. Data for 

compression. Within each cluster, 
 

The value of ce , separates the data into three widely spaced clusters, 

highest PSNR, and 11.0ce   for the cluster with the lowest PSNR. The solid symbols represent the 

same set of data, but with minr 

The original image of Lena and the decoded image with

are shown in Fig. 10. The set of domains
data obtained from an adaptive discrete cosine transform (ADCT) method is also shown. The ADCT 
method used was similar to that described in [3].
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Fig. 9. PSNR versus compression as a function of ec, rmin and nc for 512×512 Lena. Open symbols represent 
= 8. Data for ec = 5.0, 8.0 and 11.0 appear in clus

compression. Within each cluster, nc = 1 ( ), 4 ( ) and 72 ( ). ADCT data ( ) is shown for comparison.

, separates the data into three widely spaced clusters, 5.0ce   for the cluster with the 

11.0 for the cluster with the lowest PSNR. The solid symbols represent the 

min 8r  . Other parameters were set as follows: maxs n n

The original image of Lena and the decoded image with minr , ce  and cn equal to (8, 8, 72), respectively, 

are shown in Fig. 10. The set of domains
1D was used for these encodings. For the purpose of comparison, 

adaptive discrete cosine transform (ADCT) method is also shown. The ADCT 
method used was similar to that described in [3]. 
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for 512×512 Lena. Open symbols represent 

5.0, 8.0 and 11.0 appear in clusters with increasing 

) is shown for comparison. 

5.0 for the cluster with the 

for the cluster with the lowest PSNR. The solid symbols represent the 

max 1.2, 5, 7s os n n   . 

equal to (8, 8, 72), respectively, 

was used for these encodings. For the purpose of comparison, 
adaptive discrete cosine transform (ADCT) method is also shown. The ADCT 
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Fig. 10. (a) 512×512 8 bit/pixel original image of Lena, (b) Decoded image with e
For this image the compression is 36.78:1 and the PSNR is 30.71 dB.
 
DISCUSSION  
In order to compare the relative merits of various sets of parameters it is necessary to be able to decide 
what it means to say that one encoding is `better' than another. For images encoded using the method 
described in this correspondence, it has been ob
visual quality of the images (i.e. given two encodings, the one with the larger PSNR looks better). It is 
clear that the best possible encoding would have both maximum compression and maximum fidelity. In
practice this is usually not possible, since adjusting a parameter to improve the compression almost 
always results in degradation in the fidelity. Consequently it is difficult to compare two encodings if one is 
more accurate with poorer compression. The 

be made. Varying the target fidelity 

along an empirical barrier by trading compression for accuracy in a rough
encoding resulting from a different choice of parameters is better if it has a higher compression than the 
barrier for the same fidelity or better fidelity for the same compression. It is not practical to compute a 
barrier for each encoding, so that the better encoding is chosen using an estimate of the barrier. In the 
results presented below, this is what is meant when one combination of parameters is described as 
superior to another. An inclusion of the encoding time further
except where specifically indicated. Figure 9 illustrates these points. Note that in the three data points 

with min 8r  and cn  increasing 

corresponding decrease in PSNR. The curve obtained by connecting these data points represents the 

empirical barrier. By increasing 

resulting in an improved performance barrier. This improvement was achieved at the cost of increased 

encoding time. The set of data with 

slopes of the empirical barriers for the 

The data with 11.0ce   indicates that increasing ne resulted in an increase in compression and a 

decrease in PSNR. Therefore it is not obvious that increasing ne improved the encoding. In light of the 

discussion in the previous paragraph, the slope of the empirical performance 

data is steep enough that one can conclude that increasing ne did result in better encodings (i.e. the 
improvement in compression more that compensated for the decrease in fidelity). In Fig. 4 a grid of data 
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Fig. 10. (a) 512×512 8 bit/pixel original image of Lena, (b) Decoded image with ec = 8, r

the compression is 36.78:1 and the PSNR is 30.71 dB. 

In order to compare the relative merits of various sets of parameters it is necessary to be able to decide 
what it means to say that one encoding is `better' than another. For images encoded using the method 
described in this correspondence, it has been observed that the PSNR is a reasonable measure of the 
visual quality of the images (i.e. given two encodings, the one with the larger PSNR looks better). It is 
clear that the best possible encoding would have both maximum compression and maximum fidelity. In
practice this is usually not possible, since adjusting a parameter to improve the compression almost 
always results in degradation in the fidelity. Consequently it is difficult to compare two encodings if one is 
more accurate with poorer compression. The following observation suggests how such a comparison can 

be made. Varying the target fidelity ce  for a particular set of encoding parameters moves an encoding 

along an empirical barrier by trading compression for accuracy in a roughly linear way (see Fig. 9). An 
encoding resulting from a different choice of parameters is better if it has a higher compression than the 
barrier for the same fidelity or better fidelity for the same compression. It is not practical to compute a 

r each encoding, so that the better encoding is chosen using an estimate of the barrier. In the 
results presented below, this is what is meant when one combination of parameters is described as 
superior to another. An inclusion of the encoding time further complicates the issue and will be neglected, 
except where specifically indicated. Figure 9 illustrates these points. Note that in the three data points 

increasing ce  resulted in a marked improvement in compression with a 

corresponding decrease in PSNR. The curve obtained by connecting these data points represents the 

cn  to 4 and 72, both the compression and the PSNR

resulting in an improved performance barrier. This improvement was achieved at the cost of increased 

encoding time. The set of data with min 4r   shows similar behavior with some notable differences. The 

rical barriers for the min 4r  data are steeper than those of the data with

indicates that increasing ne resulted in an increase in compression and a 

decrease in PSNR. Therefore it is not obvious that increasing ne improved the encoding. In light of the 

discussion in the previous paragraph, the slope of the empirical performance barriers for the 

data is steep enough that one can conclude that increasing ne did result in better encodings (i.e. the 
improvement in compression more that compensated for the decrease in fidelity). In Fig. 4 a grid of data 
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= 8, rmin=8 and nc=72. 

In order to compare the relative merits of various sets of parameters it is necessary to be able to decide 
what it means to say that one encoding is `better' than another. For images encoded using the method 

served that the PSNR is a reasonable measure of the 
visual quality of the images (i.e. given two encodings, the one with the larger PSNR looks better). It is 
clear that the best possible encoding would have both maximum compression and maximum fidelity. In 
practice this is usually not possible, since adjusting a parameter to improve the compression almost 
always results in degradation in the fidelity. Consequently it is difficult to compare two encodings if one is 

following observation suggests how such a comparison can 

for a particular set of encoding parameters moves an encoding 

ly linear way (see Fig. 9). An 
encoding resulting from a different choice of parameters is better if it has a higher compression than the 
barrier for the same fidelity or better fidelity for the same compression. It is not practical to compute a 

r each encoding, so that the better encoding is chosen using an estimate of the barrier. In the 
results presented below, this is what is meant when one combination of parameters is described as 

complicates the issue and will be neglected, 
except where specifically indicated. Figure 9 illustrates these points. Note that in the three data points 

ulted in a marked improvement in compression with a 

corresponding decrease in PSNR. The curve obtained by connecting these data points represents the 

to 4 and 72, both the compression and the PSNR were improved, 

resulting in an improved performance barrier. This improvement was achieved at the cost of increased 

shows similar behavior with some notable differences. The 

data are steeper than those of the data with min 8r  . 

indicates that increasing ne resulted in an increase in compression and a 

decrease in PSNR. Therefore it is not obvious that increasing ne improved the encoding. In light of the 

barriers for the min 4r   

data is steep enough that one can conclude that increasing ne did result in better encodings (i.e. the 
improvement in compression more that compensated for the decrease in fidelity). In Fig. 4 a grid of data 
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is presented with different combinations of sn and on .The data is plotted in this way so that one can 

choose the `best' combination for sn  and on   By comparing these data with slope of the barrier in Fig 9 

(for min 4r  ) one can see that the combination n,.=5, n o =7 is the best. Extensive comparisons (a few 

hundred encodings of several images at various values of ce , and minr ) has shown that plots equivalent 

to Fig. 4 do not all yield the same best combination. Nonetheless the combination 5sn  , 7on   is the 

best (compromise) choice for the entire set. Consequently, all other results are given for encodings using

5sn  , 7on  . The data in Fig. 5 show the relative number of each scale factor used to encode Lena 

(encodings of other images resulted in similar data). Concentrating on Fig. 5(b) ( max 1.0s  ), because 

the larger scale factors seem to be preferred; one might hypothesize that a distribution of 's s  with more 

large values and less small values might yield improved encodings. Experiments with both linear and 
inverse logarithmic distributions for allowed values of s resulted in no improvement to the results 
presented here. In addition, the minimum allowed nonzero s can be changed. Initial data indicates that 

the values used were good. In Fig 5, note that for smaller maxs  a disproportionate number of 'is s  at the 

extremes of the allowed range of s  are used. Therefore one might hypothesize that increasing maxs  will 

result in improved encodings. In Fig. 6, this is shown to be the case. The data in this figure for both Lena 

and `tank farm' show similar results. The encodings with max 0.5s   and 0.8  yielded the poorest 

results. The encodings improved with increasing maxs  up to max 1.5s  . The max 2.0s   case yielded 

a result marginally worse than the max 1.5s   encoding. Results for a variety of other images and 

encoding parameters indicate that max 1.2s   or 1.5usually yields the best PSNR versus compression 

results. These results are particularly interesting because they show that it is possible to find an iterative 
system with a fixed point which is closer to a target by allowing some of the individual transforms to be 

non-contractive. It is of interest that every one of the encodings with max 1.0s   (numerous images and 

several hundred separate encodings) converged to a fixed point. In a few cases (with max 2.0s  ) a 

mapping took more than ten iterations to converge, but in all cases with max 1.2s  , ten iterations were 

sufficient. Since in practice it is desirable to perform only a small number of decoding iterations, 

max 1.0s   or 1.2 were used for all other encodings in this correspondence. The question of 

contractivity is important, and is very much dependent on the metric which is used. For instance, the 

following procedure can be used to check if a mapping i iW w   is eventually contractive for the 

metric 2sup ( , )
( , ) sup ( , ) ( , )

x y I
f g f x y g x y


  . Begin with an image f  such that 

( , ) 1.0f x y  . Define 'iw  as iw  with 0io  ,and i iW w    . Then 

 2

0

( , )
up ( ( , ))n

x y I
W f x y


  will be the contractivity   of 

0nW  . To check if W is eventually 

contractive, iterate W   until 1  . This test only determines eventual contractivity after an encoding 

has been made. A similar procedure for the rms metric is not known to the authors. It is relevant to note 

that a mapping W  which is contractive for sup  may only be eventually contractive for rms . Unlike the 

sup metric, the condition 1.0is   is not sufficient to ensure contractivity for the rms metric. However, 

this condition is sufficient to ensure eventual contractivity for the rms metric. Unlike the parameters 
investigated in Fig. 4-6 and 9, the number of available domains more directly effects the encoding time. 
This is important to keep in mind when examining the data in Fig. 8.The data indicate that increasing n, 
typically resulted in a moderate increase in the PSNR with a marked increase in the compression. 
Conversely, including diagonals typically resulted in little change in the compression, but in a marked 
increase in the PSNR. Decreasing the lattice spacing (increasing the number of domains) resulted in 
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increases in both PSNR and compression. This means that. For all of these different ways of increasing the 
number of domains, the performance improved. Continuing studies are underway to determine at what 
point an increase in the number of domains results in decreased performance. In Table 2, the relative 
encoding times for several encodings are presented. The data indicate the relative encoding time as a 

function of cn , ce , minr  and the image size. On an HP-Apollo 400t workstation, the relative time units 

used in Table 2 are equal to approximately 1170 cpu seconds. This code has not been optimized for speed. 

Finally, returning to Fig. 9, data using the domain set 
1D , 5.0sn  , 7.0

o
n   and max 1.2s  , are 

presented over a wide range of compressions. The resulting compression was varied by the choice of ce  

and minr . As in Fig. 8, it is shown that (at the cost of speed) the encodings can be improved by increasing

cn . Figure 9 and Table 2 indicate the trade off between encoding time and PSNR when varying cn , and 

give an indication of the efficiency of the classification method. For comparison, results are also shown for 
an ADCT algorithm similar to that described in [3].The ADCT data shown is as good as the JPEG standard 
at lower compression, and better than the JPEG standard at higher compression [9]. The PSNR versus 
compression performance of the current iterated transform method is comparable to, but not as good as, 
the ADCT algorithm. It is interesting to compare the implementation presented here with that of 

[6].Among several other differences, some major differences are that in [6] the restriction 1.0is   was 

imposed, a Hausdorff matrix as well as rms criteria was used during encoding, only 10 values for s were 

allowed, and the set of allowed domains was localized and small (about the same in number as
1/8D  ). 

Therefore, relative to any of the coding presented here, more transformations requiring fewer bits each 
were used to encode the image. It is interesting that this different approach yields comparable results, 
although the implementation described in this correspondence (last encoding in Table 2) results in an 

improvement of 1.4 dB at the same bit-rate. In a later reference by the same author [8], 512 512
images were encoded with an algorithm similar to that of [6]. In Table 2, the512 512  encoding with 

1.0cn  indicates a 1.8 dB improvement fidelity in a slightly better compression (Note that in [6-8] 

fidelity is computed as SNR not PSNR. In the discussion of Fig. 4, it is specifically noted that in choosing 

`best' values for sn  and on  data from several images were considered. Data in Fig. 6 is presented for two 

images, and in Fig. 7 for one image. Results on several other images that have been encoded show 
qualitatively similar behavior. In reference to Fig. 9, the compression and PSNR obtained for a given set of 
encoding parameters depends on the image. Note that the resulting PSNR for the image is not necessarily 

close to ce . Therefore it would be difficult to a priori choose parameters that will result in a target PSNR. 

An algorithm which accurately targets compression can be made with some simple modifications to the 

encoding procedure described here. (Instead of quadtreeing based on ce  the encoding process can be 

structured such that quadtreeing continues until a target number of transformations is reached.) 
 

Table-2: Relative Time to encode Lena for various parameters 

maxs  cn  minr  ce  Resolution rel Compression PNSR (dB) 

1.2 1 4 8 512 1 15.95:1 33.13 
1.2 4 4 8 512 3.1 17.04:1 33.19 
1.2 72 4 8 512 35.5 17.87:1 33.40 
1.0 4 4 8 512 3.1 16.74:1 33.30 
1.2 4 4 5 512 5.3 10:49:1 35.92 
1.2 4 4 11 512 2.0 24.62:1 30.85 
1.2 72 8 8 512 7.5 36.78:1 30.71 
1.2 1 4 8 256 0.14 9.09:1 30.63 
1.2 72 4 8 256 4.5 9.97:1 31.53 
1.2 72 4 10 256 3.7 11:85:1 30.58 

 
In conclusion, it should be noted that because encoding an image is the interesting problem, decoding of 
images has only been briefly mentioned in this correspondence. The decoding of images using the 
iterated transform method is inherently fast (requiring an iteration which is computationally simpler 
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than the inverse transform required for ADCT), an important advantage depending on the application. 
Even though vector quantization (VQ) methods have more in common with iterated transforms, ADCT 
has been used for comparison of data because the method is more standardized. In general, VQ methods 
might be expected to encode and decode faster than iterated transforms. Because VQ uses a fixed code 
book and iterated transforms is self referential, iterated transforms might be expected to work better for 
applications that require encoding of a wide variety of images. Current work involves investigation of 
new classification schemes that maintain PSNR compression performance while reducing encoding time; 
using linear combinations of domains; different image partitioning methods; and application to color 
images. 
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