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ABSTRACT 
In this work, the elastic and thermodynamic properties of Pt3Al under high pressure are investigated using density 
functional theory within the generalized gradient approximation. The results of bulk modulus and elastic constants at 
zero pressure are in good agreement with the available theoretical and experimental values. Under high pressure, all the 
elastic constants meet the corresponding mechanical stability criteria, meaning that Pt3Al possesses mechanical 
stability. In addition, the elastic constants and elastic modulus increase linearly with the applied pressure. 
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INTRODUCTION 
According to the Poisson’s ratio σ and elastic modulus ratio (B/G), Pt3Al alloy is found to be ductile, and 
higher pressure can significantly enhance the ductility. Those indicate that the elastic properties of Pt3Al 
will be improved under high pressure. Through the quasi-harmonic Debye model, we first successfully 
report the variations of the Debye temperature θD, specifc heats Cp , thermal expansion Coeffcient α, and 
Grüneisen parameter  under pressure range from 0 to 100 GPa and temperature range from 0 to 1000 
K.In order to understand the thermoelastic behaviour of solids adequately under the effect of high 
pressures and at high temperatures, we have to develop models for estimating the variations of thermal 
expansivity and bulk modulus. The pressure dependence of thermal expansivity and temperature 
dependence of bulk modulus are directly related to each other and defined in terms of the Anderson- 
Grüneisen parameters. It is therefore of central importance to study the variations of the Anderson-
Grüneisen parameter under the effect of pressure and temperature. The knowledge of the volume 
dependence of the Grüneisen parameter and the Debye temperature is also very useful for understanding 
the thermodynamic behaviour of solids. In particular the volume dependence of the Grüneisen parameter 
is required for investigating the equation of state at high pressure . At elevated temperatures, the thermal 
energy can be elevated using the values of Debye temperature and the Grüneisen parameter. It is 
desirable to develop an equation of state using the expansion of potential energy functions in powers of 
changes in volume. For studying the variations of thermal expansivity and bulk modulus with pressure 
and temperature we formulated models by taking into account the dependence of Anderson–Grüneisen 
parameter on the change in pressure or volume. In order to evaluate the pressure derivative of bulk 
modulus we use interatomic potential functions and equations of state derived from them in particular, 
we use, the Vinet EOS based on the Rydberg potential energy function The magnitude of thermal pressure 
increases continuously with the increase in temperature. The product of thermal expansivity and 
isothermal bulk modulus is equal to the temperature derivative of thermal pressure at constant volume. 
By evaluating the thermal pressure we study the thermal expansivity, isothermal bulk modulus, 
Grüneisen parameter and thermodynamic properties of solids. The range of temperatures shall be 
extended from room temperature upto the melting temperatures of solids. The relationship between 
thermodynamic properties and melting of solids under high pressure is of considerable importance. We 
review and critically examine the existing theories of the Grüneisen parameter and suitably modify them 
for studying the thermoelastic behaviour of solids under high pressures. 
Functionally graded materials (FGMs) are new of branch of materials which can be used for various 
conditions such as thermal and mechanical load applications. The FGMs are microscopically non-
homogeneous materials where the composition of the constituents of materials is changed continuously. 
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The mechanical benefits obtained by a material gradient may be significant, as can be seen by the 
excellent structure performance of some of these materials. Hence, there has been considerable interest 
in recent years in the application of such materials in areas such as light weight armors, high temperature 
applications and industrial fields such as electronics, biomaterials and so on Among some articles which 
dealt with the subject of stress analysis of functionally graded structures the following papers may be 
referenced. Kwon et al. studied the case of a graded sphere under  non-uniform temperature variations by 
using a numerical integration procedure. Obata and Nod  used a perturbation approach to study the 
thermal stresses in functionally graded hollow sphere that was uniformly heated. Lutz and Zimmerman  
solved the problem of uniform heating of spherical body whose elastic modulus and thermal expansion 
coefficients each vary linearly with radial position. Eslami et al.  analytically solved the governing 
equation of a functionally graded spherical vessel and investigated the temperature, displacement and 
relevant thermal stresses due to the thermal and mechanical loads Wang and Mai considered the finite 
element method to analyze one-dimensional transient heat conduction problems. Durodola and Adlington 
presented the use of numerical methods to assess the effect of various forms of gradation of material 
properties to control deformation and stresses in rotating axisymmetric components such as disks and 
rotors. Nadeau and Ferrari presented a one-dimensional thermal stress analysis of a transversely 
isotropic layer that was inhomogeneous along its thickness. Using the infinitesimal theory of elasticity, 
Naki and Murat  obtained close-form solution for stresses and displacements in functionally graded 
cylindrical and spherical vessels subjected to internal pressure. Fukui et al. studied the problem of 
uniform heating of a radial inhomogeneous thick walled cylinder. 
 
METHODS 
In the present work, all the calculations were performed based on the plane wave pseudopotential 
density-function theory method as implemented in CASTEP package . The exchange correlation energy is 
described in the generalized gradient approximation (GGA) for the exchange correlation functional. 
Pt 5d94s1 and Al 3s23p1 were treated as valence electrons. A plane wave cutoff energy of 400 eV was 
employed. The Brillouin zone was sampled by a 14θ uniform k-point mesh according to the Monkhorst-
Pack scheme grids. In this work, the quasi-harmonic Debye model  implemented in the Gibbs program is 
used to obtain the thermodynamic properties of Pt3Al. This model is Sufficiently flexible in giving all 
thermodynamic quantities by incorporating the obtained results of energy and volume. The non-
equilibrium Gibbs function G*(V ,P,T ) is described in the following form: 
G*(V ,P,T ) Æ E(V )ÅPV Å Avib(θ,T ) 
Here, E(V ) represents total energy/formula of Pt3Al, P is the hydrostatic pressure, Avib(θ,T ) is used to 
represent lattice vibration Helmholtz free energy and is taken as:  
 
 ……….(1) 
 
 
where D(θ/T ) stands for the Debye integral, n is the number of atoms per formula unit, and θ is 
expressed by 
 
             ………….(2) 
 
 
 
In relation, M is the molecular mass per formula unit, BS is a representative for adiabatic bulk modulus, 
which is estimated in terms of static compressibility by using the following relation: 
               
                            ………………………...(3) 
 
And f (v) is defined as follows: 
 
    …..(4) 
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Hence, the non-equilibrium Gibbs function G*(V ;P,T ) as a function of (V ,P,T ) can be minimized with 
respect to the volume as follows: 
 

………………….(5) 
 
In order to obtain the thermal equation of states, we should solve the equation (5) After the equilibrium 
state of a given V (P,T ) has been obtained, the isothermal bulk modulus and other thermodynamic 
properties, such as the heat capacity, vibrational internal energy, and thermal expansion can be evaluated 
using the relations given as below: 
 
 ………(6) 
 
 ……(7) 
 
 
 
 
 
 
 
 
 
 
where γ is the Grüneisen parameter. This method has already been successfully used to investigate the 
thermodynamic properties of a series of compounds. 
Estimating the effective thermal and mechanical properties of fg sphere 
In present study, two methods are used to estimate the effective mechanical properties of FG sphere. One 
of the simplest methods in estimation of the effective mechanical and thermal properties of a mixture of 
two constituent materials is the Rule of Mixture (R-M) scheme. Another scheme for estimating the 
mechanical properties is due to the work of Mori-Tanaka. When the mechanical properties of FG sphere 
are estimated by using the Mori-Tanaka scheme, thermal material properties of FG body may be 
determined utilizing the R-M or the other methods which will be discussed as follows. 
Rule of mixture (R-M) scheme 
In rule of mixture scheme, the fractions of mixtures are only considered and the forces between the 
phases are not included in consideration. The R-M scheme states that the material properties of a matrix 
phase and particulate phase in a mixture can be determined by application of only the effect of volume 
fraction of each phase on material properties.  
 
RESULTS AND DISCUSSIONS 
Structure property 
As we know, Pt3Al has two kinds of structures including cubic phase and tetragonal phase. For cubic 
phase, Pt3Al alloy has a Cu3Au-type structure (space group: Pm3m, No: 221), with lattice parameters: a 
Æ b Æ c Æ 3.876 Å . The Pt and Al atoms are located at the site (0, 0, 0) and (0.5, 0, 0), respectively. Each 
Al atom is surrounded by twelve Pt atoms. For tetragonal phase, Pt3Al has a space group: P4/mmm (No: 
123) with experimental lattice parameters: a Æ b Æ 3.832 Å and c Æ 3.894 Å. There are two types of Pt: 
1c (0.5, 0.5, 0) and 2e (0, 0.5, 0.5), respectively. The Al atom is in the site 1a (0, 0, 0).We have calculated 
the formation enthalpies of tetragonal and cubic phase as the pressure increasing from 0 GPa to 100 GPa. 
Our results show that the formation enthalpies of cubic structure are lower than that of tetragonal 
structure below 100 GPa. This means that cubic Pt3Al is stable under high pressure which is consistent 
with the result of Liu . To obtain equilibrium structural parameters, the atom position and structure of 
Pt3Al were optimized. At 0 GPa, the calculated lattice parameters of cubic phase a is 3.86 Å. We note a 
very good agreement between our results and experimental data. This offers the reliability and accuracy 
to our further investigation. 
Elastic property 
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To the best of our knowledge, the elastic properties de1ne the behavior of a solid under different stress 
and strain conditions. The elastic stiffness parameters can describe the bonding characteristics, 
mechanical deformations, and structural stability. To obtain the elastic constants, a small strain should be 
loaded to the crystal. They can be got by calculating the total energy as a function of appropriate lattice 
deformation, which are expanded as the Taylor expansion for a system with respect to a small strain ±and 
volume V0[20, 21]. The elastic strain energy E(V ) is expressed as follows:  
 
 ………………..(8) 
 
 
 
 
Here, Ci j are elastic constants, ±i and ±j are related to the strain on the crystal. For cubic symmetry, there 
are three independent elastic constants, that are C11, C12, C44. The calculated elastic constants Ci j of 
Pt3Al are shown in 1gure 1. At 0 GPa, the calculated elastic constants of Pt3Al (C11 Æ 400.8,C12 Æ 
205.27, C44 Æ 131.71, and B Æ 270.46) are consistent with the experimental values (B Æ 277) and other 
theoretical results (C11 Æ 395, C12 Æ 210, C44 Æ 118) [8]. In general, the requirements of mechanical 
stability in a cubic crystal lead to the following restrictions on the elastic constants: C11 È 0, C12 È 0, C11 
¡C12 È 0, C11 Å2C12 È 0 [22, 23]. Obviously, our results in figure 1 (a) show that all the elastic constants 
satisfy the stabilities criteria up to 100 GPa. This clearly indicates that Pt3Al under high pressure 
possesses mechanical stabilities. There is no doubt that the elastic constants of a solid are strongly 
affected by the pressure. It should be noted that the elastic constants C11, C12, C44 increase linearly with 
the pressure increase because the lattice parameters of Pt3Al become shorter under pressure. 

 

 
It is acknowledged that bulk modulus B and shear modulusG can measure the hardness in an indirect 
way. The calculated bulk modulus B, shear modulus G, and Young’s modulus Y under different pressures 
are shown in figure 1 (b). It is found that bulk modulus B, shear modulus G, and Young’s modulus Y of 
Pt3Al gradually increase as pressure increases, indicating that Pt3Al becomes more and more diWcult to 
be compressed as the pressure increases. In addition, all the elastic modulus can be used as a measure of 
the average bond strength of atoms for a given crystal. A larger bulk modulus B and Young’s modulus Y 
respond to the more covalent and stronger bond strength. Hence, it can be expected that Pt and Al atom 
can form covalent bonds under high pressure. The shear modulus G is the relationship between the 
resistance to reversible deformations and the shear stress. A high shear modulus G is mainly due to the 
elastic constants C44, because a large C44 implies a stronger resistance to shear in the (1 0 0) plane. For a 
further analysis, the deformation behavior of Pt3Al, the value of B/G and Poisson’s ratio � which are 
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related with the brittleness and hardness of the materials are shown in table 1. Generally, the B/G ratio is 
used to predict the brittle or ductile behavior of materials. The critical value which separates ductile and 
brittle material is 1.75. The material exhibits a ductile behaviour when the value B/G È 1.75; otherwise, 
the material behaves in a brittle manner. We found that the B/G is 2.89 at 0 GPa and increases with the 
pressure increase. It means that the Pt3Al belongs to a ductility material and the pressure can improve 
the ductility of Pt3Al. Another important property is the Poisson’s ratio σ which is de1ned as the absolute 
value of the ratio of transverse strain to longitudinal strain. It is used to quantify the stability of the 
crystal against shear. The larger is the Poisson’s ratio σ the better is the plasticity. 
Thermodynamic properties 
To our knowledge, Debye temperature θD is one of the most important parameters describing the thermal 
characteristics of compounds. The Debye temperature correlates with many physical properties of 
material, which are derived from elastic properties under pressures. Some detailed information of a solid, 
such as the melting temperature and specific heat can be found by calculating the Debye temperature. We 
obtain the thermodynamic properties of Pt3Al at various temperatures and pressures from the energy-
volume relations using the quasi-harmonic Debye model. The Debye temperature θD as a function of 
temperature at different pressures is shown in figure 2 (a). It can be clearly seen that  θD in the range of 
temperatures from 0 to 1000 K approximately remains unaltered with the temperature increase, meaning 
that it is insensitive to temperature. Figure 2 (b) shows the Debye temperature as a function of pressure 
at different temperatures of T  0, 300, 600, and 900 K. It is noted that θD linearly increases and further 
compression slows down the increase. As the pressure goes higher, the decreased magnitude of Debye 
temperature   θD becomes small. This is because the Debye temperature is related to the volume V and 
adiabatic bulk modulus. Figure 2 (b) shows that when the temperature is constant, the Debye 
temperature  in θD creases non-linearly with the applied pressures, indicating the change of the vibration 
frequency of particles under pressure. Hence, the temperature has a more signi1cant effect on the Debye 
temperature  th θD an pressure, and the temperature exhibits a smaller and smaller effect on the Debye 
temperature with an increase of pressure. To describe the thermal properties of a material, the volume 
thermal expansion coefficient  α is another essential parameter. The dependence of the volume thermal 
expansion coefficient   α of Pt3Al on the temperature and pressure is illustrated in figure 3. We noted that  
in α creases rapidly with T 3 at zero or low pressure when the temperature is below 200 K and gradually 
approaches a very low linear increase above 400 K for a given pressure. Moreover, we can also see that 
the values of at α zero pressure are much greater than those at other pressures. Figure 3 (b) gives α as a 
function of pressure at different temperatures of T  0, 300, 600, 900 K. It can be seen that for a given 
temperature, the thermal expansion coefficient  α is zero at 0 K and rapidly decreases with the pressure α 
increase, and it becomes at under high pressure. Moreover, the higher is the temperature, the faster the  
decreases. There is observed a larger thermal expansion α at a higher temperature and at a lower 
pressure, and it provides less sensitivity of  α at high temperature and high pressure for Pt3Al. As another 
important thermodynamic parameter of solids, the heat capacity Cp is of key importance for linking 
thermodynamics with microscopic structures and dynamics. Moreover, the knowledge of the heat 
capacity of a substance not only provides an essential insight into its vibrational properties but also is 
mandatory for many applications. Figure 4 shows the calculated heat capacity Cp as a function of 
temperature and pressure. It is obvious that CP follows the relationship of the Debye model [C(T )/T 3] up 
to 200 K. Then, it monotonously increases with the temperature increase and converges to a constant 
Dulong-Petit limit, which is common to all solids at high temperatures.We note that the heat capacity Cp 
slowly decreases with the pressure increase, and the high temperature will slow down this trend seen in 
figure 4 (b). Figure 4 implies that temperature and pressure have an opposite effect on the heat capacity, 
while the temperature has a greater effect on the heat capacity than the pressure. In the quasi-harmonic 
Debye model, the Grüneisen parameter γ is of a great signi1cance. It describes the anharmonic effects of 
the crystal lattice thermal vibration and has been widely used to characterize the thermodynamic 
behavior of a material at high pressure. The calculated Grüneisen parameter γ with pressure and 
temperature are presented in figure 5. It can be observed that the Grüneisen parameter γ almost keeps 
unchanged with the temperature increase at a fixed pressure in figure 5 (a), while it quickly decreases 
with the applied pressure. This is because the Grüneisen parameter γ is as function of the volume which is 
affected by the pressure in the quasi-harmonic model. And, there is a larger thermal expansion at low 
pressure. Those results suggest that the effect of the temperature on the Grüneisen parameter γ is not as 
significant as that of the pressure P. Furthermore, the Grüneisen parameter γ increases more slowly at 
high pressure than at low pressure. 
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CONCLUSIONS 
First principles calculations are performed to investigate the elastic and thermodynamic properties of 
L12 phase Pt3Al alloy under high pressure and high temperature. The elastic constants, bulk modulus B, 
shear modulus G, and Young’s modulus Y as a function of the pressure have been systematically 
investigated. The results show that all the elastic constants meet the corresponding mechanical stability 
criteria and the elastic modulus increases linearly with the applied pressure. The Poisson’s ratio σ and the 
elastic modulus ratio (B/G) show that L12 phase Pt3Al alloy is found to be ductile and higher pressure 
can signifcantly enhance the ductility. This means that the elastic properties of Pt3Al will be improved 
under high pressure. To study the thermal and vibrational effects, the quasi-harmonic Debye is used. The 
dependence of Debye temperature θD , specifc heats Cp , thermal expansion coefficient α , and the 
Grüneisen parameter γ are systematically explored in the ranges of 0–100 GPa and 0–1000 K.We find that 
the temperature has a more signifcant effect on the Debye temperature  θD and the heat capacity Cp than 
pressure. Furthermore, the thermal expansion coefficient α becomes insensitive to high temperature and 
high pressure. 
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