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INTRODUCTION 
The study of second order duality is significant due to the computational advantages over the first order 
duality, as it provides tighter bounds for the value of the objective function, when approximations are 
used [8,10,12]. Mangarsarian [10] considered a nonlinear program and discussed second order duality 
using certain inequalities. Mond [12] introduced the concept of second order convex function, which was 
named as bonvex function by Bector and Chandra [3]. Husain et al. [9] discussed second order duality 
results for non linear programs using Fritz John necessary conditions. Yang et al. [15] pointed out some 
inconsistencies in the statement and proof of the converse duality theorem given in [9]. 
Zhang and Mond [16] introduced second other (F, )-convex functions and established duality theorems 
for second order Mangasarian, Mond-Weir and general Mond-Weir type vector duals. In [11], Mishra 
obtained weak and strong duality theorems for second order Mond-Weir type multiobjective dual 
involving generalized type I functions. Yang et al. [14] proposed a general Mond-Weir type dual for a class 
of nondifferentiable multiobjective program, in which each component of the objective function contains 
support function and derived a weak duality theorem under generalized convexity. Aghezza [1] 
formulated a second order mixed type dual and established various duality results with new class of 
second order generalized (F, )-convex functions. Hachimi and Aghezzaf [7] established duality results for 
mixed type vector dual involving a new class of second order type I functions. Recently, Ahmad and 
Husain [2] introduced a class of second order (F,, , d)-convex functions and their generalizations, and 
established weak, strong and strict converse duality results for Mond-Weir type multiobjective dual. 
The present paper is concerned with the following nondifferentiable multiobjective programming 
problem: 
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 Subject to },0)(:{  xgXxSx  

where X is an open subset of Rn, fi : X  R, i  K and g : X  Rm are twice differentiable functions and Bi, i  
K is an n  n positive semidefinite symmetric matrix. 
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In this paper, we formulate a second order Mond-Weir type dual for (P) and prove weak, strong, converse 
and strict converse duality theorems under second order generalized convexity assumptions. This work 
extends an earlier work of [2] and the references cited therein.  
2. Notations and preliminaries 

Throughout the paper, the following notations for vectors x,y  Rn will be used: 

 x  y if and only if xi  yi, i = 1,2, …, n;     

 x  y if and only if x  y and x  y;   

 x > y if and only if xi > yi, i = 1,2, …, n.     

Let K = {1,2,…, k} and for each fixed r  K, Kr = K – {r}.  

 Consider the following vector minimum problem: 

(VMP) Minimize f(x) = [f1(x), f2(x), …, fk(x)] 

  subject to x  S, 

where f : X  Rk and X  Rn. 

Definition 1. A point Sx  is said to be an efficient solution of (VMP), if there exits no other x  S such 

that 

rii Kixfxf  ),()(  

and  

.),()( Krxfxf rr   

Definition 2. A point Sx  is said to be a weakly efficient solution of (VMP), there exits no other x  S 

with  

rii Kixfxf  ),()(  

Definition 3 [5]. An efficient solution x  of (VMP) is said to be properly efficient, if there exists a scalar N 

> 0 such that for each r  K, fr (x) < fr ( x ) and x  S,      

N
xfxf

xfxf

ii

rr 




)()(

)()(
 

for at least one i  Kr such that fi ( x ) < fi (x). 

Definition 4. A function RRXXF n :  is said to be sublinear in its third component, if for all x, 

x   X. 

(i) F(x, x ; 1 + 2)  F(x, x ; 1) + F(x, x ; 2), for all 1, 2  Rn, 

(ii) F(x, x ; 1) = F(x, x ; 1) for all   R,   0, and for all 1  Rn. 

 In the sequel, we require the following definitions [2]. 

Let F be sublinear, the function f = (f1, f2,…, fk): X  Rk be differentiable at x  X and let  = (1, 2, … , k) 

 Rk . 
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Definition 5. A twice differentiable function fi over X is said to be second order (F, , i, d)-convex at x on 

X, if for all x  X, there exist a vector p  Rn, a real valued function : }0{\ RXX  , a real valued 

function d (.,.): RXX   and a real number i such that   

).,(}))()(){,(;,()(
2

1
)()( 222 xxdpxfxfxxxxFpxfpxfxf iiii

t
ii    

If the above inequality is strict, then fi is said to be strictly second order (F, , i, d)-convex at x on X. 

A vector valued function f = (f1, f2,…, fk): X  Rk is (strictly) second order (F, , i, d)-convex at x on X, if 

each of its components fi is (strictly) second order (F, , i, d)-convex at x on X. 

Definition 6. A twice differentiable function fi over X is said to be second order (F, , i, d)-pseudoconvex 

at x on X, if for all x  X, there exist a vector p  Rn, a real valued function : }0{\ RXX  , a real 

valued function d(.,.): RXX   and a real number i such that  

,)(
2

1
)()(),(}))()(){,(;,( 222 pxfpxfxfxxdpxfxfxxxxF i

t
iiiii    

or equivalently, 
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2

1
)()( 222 xxdpxfxfxxxxFpxfpxfxf iiii

t
ii    

Definition 7. A twice differentiable function fi over X is said to be strictly second order (F, , i, d)-
pseudoconvex at x on X, if for all x  X, there exist a vector p  Rn, a real valued function : 

}0{\ RXX  , a real valued function d(.,.): RXX   and a real number i such that  

,)(
2

1
)()(),(}))()(){,(;,( 222 pxfpxfxfxxdpxfxfxxxxF i

t
iiiii    

or equivalently, 

).,(}))()(){,(;,()(
2

1
)()( 222 xxdpxfxfxxxxFpxfpxfxf iiii

t
ii    

A vector valued function f = (f1, f2,…, fk): X  Rk is (strictly) second order (F, , i, d)-psedoconvex at x on 

X, if each of its components fi is (strictly) second order (F, , i, d)-pseudoconvex at x on X. 

Definition 8. A twice differentiable function fi over X is said to be second order (F, , i, d)-quasiconvex at 

x on X, if for all x  X, there exist a vector p  Rn, a real valued function : }0{\ RXX  , a real 

valued function d(.,.): RXX   and a real number i such that  

),,(}))()(){,(;,()(
2

1
)()( 222 xxdpxfxfxxxxFpxfpxfxf iiii

t
ii    

or equivalently, 

.)(
2

1
)()(),(}))()(){,(;,( 222 pxfpxfxfxxdpxfxfxxxxF i

t
iiiii    
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A vector valued function f = (f1, f2,…, fk): X  Rk is second order  (F, , i, d)-quasiconvex at x on X, if each 

of its components fi is second order (F, , i, d)-quasiconvex at x on X. 

An example of second order (F, , i, d)-convex function is given by Ahmad and Husain [2] but they did 
not provide the examples of second order (F, , i, d)-pseudoconvex functions and second order (F, , i, 
d)-quasiconvex functions. The examples of such functions are given below. 

Example 1. Define a function f : X  R, where X = {x  R| x  1} by f(x) = x3 + 4x and F : X  X  R  R by F 

(x, x ; a) = 







 x
x

a
1

, distance function d ,(x )x = ,0,4,  pxx   and  ,(x )x = x2 + 1. f is 

second order (F, , , d)-pseudoconvex function at x = 1, but not second order (F, , , d)-convex. Also, 

when  ,(x )x = 1, then f is not second order (F, )-pseudoconvex. 

Example 2. Define a function f : X  R, where X = {x  R| x  1} by f(x) = x3 + x2 and F : X  X  R  R by F 

(x, x ; a) = a (x + x ), distance function d ,(x )x = ,0,2,  pxx   and  ,(x )x = x  x  + 1. 

Then f is second order (F, , , d)-quasiconvex at x = 1, but not second order (F, , , d)-convex. Also, 

when  ,(x )x = 1, then f is not second order (F, )-quasiconvex. 

The following theorem [13] will be needed in the sequel: 

Theorem 1. Let x  be a properly efficient solution of (P) at which a constraint qualification is satisfied. 

Then there exist    Rk, u   Rm, iv   Rn, i  K such that 

,0)())(( 


xguvBxf t
iii

Ki
i      

,0)( xgu t  

,,)( 2

1

KivBxxBx ii
t

i
t   

,,1 KivBv ii
t
i   

.0,1,0  


u
Ki

i  

3. Second Order duality 

In this section, we formulate the following Mond-Weir type dual associated to (P) and discuss duality 
results. 

(MD)  Maximize 







 pyfpvByyfpyfpvByyf k
t
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t
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tt )(
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2

1
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1
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111  

Subject to ,0)()())()(( 22 


pyguyguvBpyfyf tt
iiii

Ki
i      (1) 

,0)(
2

1
)( 2  pygupygu ttt

      (2) 

,,1 KivBv ii
t
i        (3) 
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.0,0  u       (4) 

Remark 1. Let KiBi  ,0 . Then (MD) becomes the second order Mond-Weir type dual obtained 

by Zhang and Mond [16] with the addition of 



Ki

i 1 . If, in addition, p = 0, then the dual (MD) reduces 

to the first order Mond-Weir type dual considerd in [6]. 

Let G and H denote the sets of all feasible solutions of (P) and (MD) respectively. 

Theorem 2 (Weak Duality). Let x  G and (y, u, v1, v2, …, vk, , p)  H. if  

(i) 



Ki

ii
t

ii vBf )(.)(.)(  is second order (F, , , d)-pseudoconvex at y; 

(ii) (.)gut  is second order (F, 1, 1, d)-quasiconvex at y; and 

(iii) .0
),(),( 1

1 
yxyx 






   

Then the following cannot hold: 
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2

1
)()()( 22

1

ri
t

ii
t

ii
t

i KipyfpvByyfxBxxf    (5a) 

and 

,,)(
2

1
)()()( 22

1

rr
t

rr
t

rr
t

r KrpyfpvByyfxBxxf   (5b) 

Proof. For every x  G and (y, u, v1, v2, …, vk, , p)  H, 

,)(
2

1
)(0)( 2 pygupyguxgu tttt   

which by the virtue of hypothesis (ii) implies 

F (x, y; 1(x, y) (2 ut g(y) + 2 ut g(y)p))  1d2 (x,y). 

As 1(x, y) > 0, it follows that 

F (x, y;  ut g(y) + 2 ut g(y)p)   ).,(
),(

2

1

1 yxd
yx


 

The sublinearity of F along with (1) and (6), yields 





Ki

tt
iiiii pyguyguvBpyfyfyxF ))()())()((;,(0 22   
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which by hypothesis (iii) gives  
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On using hypothesis (i) we, obtain  
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t
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t
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
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Now let x* = KixBi ,
2/1

 and .,
2/1*

KivBv iii   From Schwartz inequality and 
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ii
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ii
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 The equations (7) and (8) imply that  
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i
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ii
t

i
Ki
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

   (9) 

Suppose to the contrary that (5a) and (5b) hold, i.e., 

 ,,)(
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1
)()()( 22

1
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t

ii
t

ii
t

i KipyfpvByyfxBxxf   

and 
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1
)()()( 22

1

KrpyfpvByyfxBxxf r
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t
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t

r   

Since  > 0, therefore 

),)(
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1
)(())()(( 22

1

pyfpvByyfxBxxf i
t

ii
t

i
Ki

ii
t

i
Ki

i  


   

which is a contradiction to (9). 

Theorem 3 (Strong Duality). Let x  be a properly efficient solution of (P) at which a constraint 

qualification is satisfied. Then there exists   Rk, u   Rm, iv   Rn, i  K and p  Rn such that 

Hpvvvux k  )0,,,...,,,,( 21  and the objective function values of (P) and (MD) are equal. Also, if 

the hypotheses of weak duality (Theorem 2) hold, then )0,,,...,,,,( 21 pvvvux k   is a properly 

efficient solution of (MD). 
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Proof. Since x  is a properly efficient solution of (P) at which a constraint qualification is satisfied, by 

Theorem 1, there exist   Rk, u   Rm, iv   Rn,     i  K such that 

,0)())(( 


xguvBxf t
iii

Ki

i  

,0)( xgu t  

,,)( 2

1

KivBxxBx ii
t

i
t   

,,1 KivBu ii
t   

.0,0  u  

Thus Hpvvvux k  )0,,,...,,,,( 21  and the objective function values of (P) and (MD) are equal. 

Now we first show that )0,,,...,,,,( 21 pvvvux k   is an efficient solution of (MD). For this, assume 

that it is not efficient. Then there exists a feasible solution (y*, u*, v1
*, v2

*, … , yk
*, *, p*) such that 

  ,,)()(
2

1
)( **2****

rii
t

ii
t

ii
t

i KivBxxfpyfpvBxyf   
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)( **2**** KrvBxxfpyfpvBxyf rr

t
rr

t
rr

t
r   

Using KivBxxBx ii
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1

 in the above inequalities, we get 
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1
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t
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rr
t

r    

Which contradicts weak duality (Theorem 2). Hence )0,,,...,,,,( 21 pvvvux k   is an efficient 

solution of (MD). Assume now that it is not properly efficient. Then there exists a feasible solution (y*, u*, 
v1

*, v2
*, … , yk

*, *, p*) and an r  K such that   

rr
t

rr
t

rr
t

r vBxxfpyfpvBxyf  )()(
2

1
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and 

])([])(
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t
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t
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t
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,])(
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)([])([ **2****
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for all M > 0 and all i  Kr satisfying   

.)(
2

1
)()( **2**** pyfpvBxyfvBxxf i

t
ii

t
iii

t
i   

Again by KivBxxBx ii
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, we have  
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t
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ii
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This means that ])()([])(
2

1
)([ 2

1
**2**** xBxxfpyfpvBxyf r

t
rr

t
rr

t
r  , r  K can be made 

arbitrary large, whereas 
***2

1

)([])()([ ii
t

ii
t

i vBxyfxBxxf     ])(
2

1 **2* pyfp i
t  is finite for all 

i  Kr. Therefore, 
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1
)()()( **2****2
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t

ii
t

ii
t

i KipyfpvBxyfxBxxf    

and 

,,)(
2

1
)()()( **2****2

1

KrpyfpvBxyfxBxxf r
t

rr
t

rr
t

r    

again a contradiction to weak duality (Theorem 2). Hence ,,,...,,,,( 21 kvvvux  )0p  is a properly 

efficient solution of (MD). 

Theorem 4 (Converse Duality). Let )0,,,...,,,,( 21 pvvvuy k   be a weakly efficient solution of 

(MD). Assume that 

(i) either (a) then n  n Hessian matrix ))((2 ygu t  is a positive definite and 0)(  ygup tt
 

or, (b) the n  n Hessian matrix ))((2 ygu t  is a negative definite and 0)(  ygup tt
. 

(ii) the vectors KivBpyfyf iiii  ,)()( 2
 are linearly independent vectors; and  

(iii) the vectors },...,2,1,;)]([,)]({[ 22 njKiyguyf j
t

ji  are linearly independent, where 

ji yf )]([ 2 is the j-th row of )(2 yfi  and j
t ygu )]([ 2  is the j-th row of )(2 ygu t . 

Then y  is a properly efficient solution of (P) and the objective values of (P) and (MD) are equal. 
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Proof. Since )0,,,...,,,,( 21 pvvvuy k   is a weakly efficient solution of (MD), then by Firtz John 

conditions [4], there exist   Rk,   Rn,   R,   R,   Rk and   Rk such that 





Ki

ii
t

Ki
i

t
iiii yfpyfpvByf )([)])((
2

1
)([ 22   

)])(()())(( 222 pyguygupyf tt

Ki
ii  



  

      ,0)])((
2

1
)([ 2  pygupygu ttt    (10) 

,0])(
2

1
)([])()([ 22   pygpygpygyg tt

  (11) 

,,02 KivBBBy iii
t

ii
t

i        (12) 

     ,Ki,vBpyfyf iiiii
t  02

   (13) 

       



Ki

tt

i

t

ii ygupyfp ,022     (14)  

    ,pygupygu ttt 0
2

1 2 





      (15) 

  ,Ki,vBv ii
t
i  01        (16) 

,t 0          (17) 

,ut 0          (18) 

  ,0,,,,         (19) 

  ,0,,,,,         (20) 

Equation (14) along with hypothesis (iii) implies 

   Kip ii  ,0     (21) 

and 

   .p 0       (22) 

Using (1), (21) and (22) in (10), we have 
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            



Ki

tt
iiiiii pyguyfvBpyfyf  222

          



Ki

tt

i

t

i pyguppyfp .0
2

1

2

1 22   (23) 

Let  = 0. Then equation (22) yields  = 0 and equation (21)  gives 

   .,0 Kipi   

Thus equation (23) reduces to  

       



Ki

iiiii vBpyfyf ,02  

which by hypothesis (ii) gives 

   .,0 Kii   

Also, equations (11) and (13) yield 

   0   and .Ki,i  0  

Now, equation (12) along with (16) imply .0  Hence  (, , , , , ) = 0. A contradiction to (20). 

Therefore  > 0. 

In the similar way, one can obtain i > 0, i  K, by exhibiting a contradiction. 

On multiplying (11) by 
tu  and then using (15) and (18), we get  

        .pyguygu ttt 02   

which with (22) yields 

         02  pyguygup ttt
 

or 

      .pygupygup tttt 2  

 This contradicts hypothesis (i) for p .0  Therefore 0p  and then by (21), we have .0  

On using 0p  and ,0  equation (11) reduces to 

     .yg



  

Since 0 and ,0  we have  

    .yg 0  
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Hence, y  is feasible for (P). 

Also,  = 0, ,0i  Ki   and (12) give 

  ,,
2

KivByB ii

i

i 



     (24) 

and hence  

      .KivBvyByvBy
,

ii
t
ii

t
ii

t  2

1

2

1

   (25) 

 If ,0  then (16) implies 1ii
t
i vBv  and so (25) gives 

    .Ki,yByvBy i
t

ii
t  2

1

 

 Hence, in either case, we have  

    .Ki,yByvBy i
t

ii
t  2

1

     (26) 

Therefore by (26) and ,p 0  we get 

          .pyfpvByyfyByyf i
t

ii
t

iii
2

2

1

2

1
  

Thus by weak duality  (Theorem 2), y  is a properly efficient solution of (P). 

Theorem 5 (Strict Converse Duality). Let x    G and  pvvvuy k ,,,....,,,, 21   H such that 

      










Ki
i

t
ii

t
ii

Ki
ii

t
ii .pyfpvByyfvBxxf 2

2

1
 (27)  

 If     



Ki

ii

t

ii vB..f  is second order strictly ( ),,, dF   pseudoconvex at ,y  and 

 .gu t  is second order ( ),,, dF   quasiconvex at y  with 
   

.
y,xy,x

0
1

1 








  

Then  xy  . 

Proof. We assume that xy   and exhibit a contradiction. Since x  and   ,v,....,v,v,u,y ,k21  

are feasible for (P) and (MD), we have 

   xgu t      .pygupygu ttt 2

2

1
0   
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Using second order    d,,F 11 quasiconvexity of  .gu t  at ,y   we get 

         yxdpyguyguyxyxF tt ,,;, 2
1

2
1    

which by   yieldsy,x 01   

    
 

 .,
,

;, 2

1

12 yxd
yx

pyguyuyxF tt




   (28) 

The sublinearity of F and (1) imply 





Ki

tt
iiiii pyguyguvBpyfyfyxF ))()())()((;,(0 22   

    



Ki

tt
iiiii pyguyguyxFvBpyfyfyxF ))()(;,())()((;,( 22  

   



Ki

iiiii yxd
yx

vBpyfyfyxF ),,(
),(

)))()((;,( 2

1

12




  

Since 0
),(),( 1

1 
yxyx 






, we obtain 





Ki

iiiii yxd
yx

vBpyfyfyxF ).,(
),(

)))()((;.,( 22




  

The second order strict (F, , , d)-pseudoconvexity of ](.)(.)[ ii
t

i
Ki

i vBf 


  at y  gives 

),)(
2

1
)((])([ 2 pyfpvByyfvBxxf i

t
ii

t
i

Ki
iii

t
i

Ki
i  



   

a contradiction to (27). Hence xy  . 
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