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ABSTRACT 

The present study concentrates an attempt to study an unsteady convective heat and mass transfer of a 
flow of a viscous electrically conducting fluid through a porous medium confined in a vertical channel 
bounded by flat walls in the presence of heat generating sources, by taking into account Radiation 
effect.  An oscillatory pressure gradient in the x-direction is considered in the flow region. A perturbation 
method is employed to solve the equations governing the flow heat and mass transfer has been solved 
to obtain the expression for velocity, temperature and concentration. The skin friction, the rate of heat 
and mass transfer has been evaluated for different variations of the governing parameters.  
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INTRODUCTION 
Natural convection flows due to the combined buoyancy effects of thermal and species 
diffusion in a fluid saturated porous medium have many applications, such a geothermal 
fields, soil pollution, fibrous insulation and nuclear – waste disposal. 
The flow of a viscous incompressible fluid bounded by one or two infinite planes with 
porous walls has gained considerable importance in view of its applications to reduce 
boundary layer to a turbulent may be suppressed is to reduce mass from the boundary 
layer through pores or slits on the boundary. 
To obtain any desired reduction in the drag increasing suction along is uneconomical as the 
energy consumption of the suction pump will be more. Therefore the method of “cooling of 
the wall” in controlling the laminar flow together with applications of suction has become 
more useful. 
 In fluid flows through porous media the finite element method has been used extensively 
and found to be highly successful. Sugunamma[6] has analysed the free convective heat 
transfer flow of a viscous fluid through a porous medium confined in horizontal channel by 
using the Galerkin finite element method.   In all these studies the thermal diffusion is not 
considered .This assumption is true only when the flow takes place at low concentration 
level. There are, however some exceptions. In view of the importance of this diffusion 
thermo effect Jha and Singh [4], Ajay Kumar Singh [2], and Riah and Hsui [7] have 
analysed the convective heat and mass transfer with Soret effect under different conditions.  
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MATHEMATICAL FORMULATION 
We analyse the convective flow of an incompressible viscous fluid in a horizontal channel 
filled with a porous matrix bounded by parallel porous walls. The flow takes place along the 
axis of the channel. The surfaces of the walls are kept at constant heat and mass flux in the 
direction of the flow. The momentum equations for the fully developed free convection 
flow.It are assumed that the fluid is in local thermal equilibrium. Boussinesq approximation 
is used so that the density variation will be retained on the buoyancy term..We choose the 
Cartesian frame of reference 0(x,y,z) , such that the imposed pressure gradient is along  x-
axis and  y =  h are the boundary planes (Fig.(a)).In the absence of extraneous forces the 
flow is unidirectional along x-axis. 
 Under these assumptions the equations governing the flow and heat transfer are 
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By using Rosseland approximation (Brewester*)the radative heat flux is given by 
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and expanding 
4T  by Taylor’s series and neglecting terms of higher order we get 

434 34 ee TTTT       (1.6) 

where 
 is the Stefan –Boltzman constant and R is mean absorption coefficient. 

The flow being unidirectional, in view of the equation of continuity u = u(y ,z). 
 The heat mass flux being constant along the channel  

 
xd

Td
 = A ,  on the wall y = h  

 Where A is the uniform temperature gradients respectively. Hence the temperature in the 
flow field may choose to be 
  T = A x + T1 ( y , z)   
 The boundary conditions are  
 u = 0               on        y = h 
T = T1                 on     y = h    at the entry x = 0 and              (1.7) 

T = Ax + T1      on   y = h, x  0 
In view of the symmetry w.r.t. the central line y = 0  
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We introduce the following non-dimensional variables as follows. 

  z  = z*b  ,  y = y* b ,      T = T0 + q* ( T1 – T0 )    
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Substituting these Non-dimensional variables in equations (1.1)-(1.4)  
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   The corresponding boundary conditions in the non-dimensional form are 

u = 0   on y = 1     q = 1 , at   x = 0   on   y  = 1            (1.11)   
q =1+N1x   ,            x   0 on   y = 1                                             (1.12) 
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In view of the two dimensionality and symmetry of the flow w.r.t. the midplane of the 
channel we analyse the flow features in a domain in the upper half of the channel bounded 
by the impermeable wall lying between two parallel planes normal to the wall at unit 
distance apart. The finite element analysis with quadratic approximation functions is 
carried out using eight noded serendipity elements. 
 
RESULTS AND DISCUSSION 
The Fintie Element analysis is used to investigate the mixed convective Heat Transfer flow 
of a viscous incompressible fluid through a saturated porous medium in a Horizontal 
channel through a flow with in the porous medium is taken into account based on the 
Brinkaman extended Darcy model the flow is uni directional and the behaviour of velocity 
temperature and Nusselt number is discussed for different variations of the governing 
parameters. The variation of u at different vertical levels Z=0 and 1 are drawn in Figs.1and 
2. these profiles are asymmetric curves exhibiting a reversal flow in the region 0≤y≤0.6 at 
Z=0 and Z=1.Lesser the permeability of the porous medium larger u at Z=0 level reversal 
flow in the vicinity of y=1.Lesser the permeability of the porous medium larger u at Z=0 level 
Larger u in the flow region and for further lowering of the permeability smaller the velocity 
in the flow region (Fig.1). Fig.2 shows that at Z=1 level a reversed behaviour is noticed in u 
with D-1. Also the reversal zone shrinks with D-1≤5x103 and enhances with D-1≥104. 

The non-dimensional temperature q is shown in Figs.3 and 4 at different horizontal and 
vertical levels. We follow the convention that the non-dimensional temperature positive or 
negative according as the actual temperature is greater/lesser than in mean temperature. 
We notice that the non-dimensional temperature is negative for all variations this indicates 
that actual temperature is lesser than the mean temperature every where in the fluid region 
lesser the porous permeability smaller the actual temperature in the every flow region at all 
vertical and horizontal levels (Figs.3 and 4)  
The shear stress has been evaluated for variations in D-1 and S.  At three different axial 
positions Z=0, and 1 of the channels and is exhibited in Tables.1 and 2.  It is observed from 
these tables that lesser the permeability of the porous medium larger the shear stress at all 
axial positions (Tables.1 and 2). The Nusslet Number (Nu) which represents the rate of Heat 
Transfer has been evaluated for variations in G, D-1, and S. The Nusselt Number at two 
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different position at Z=0 and 1 across the boundary plane has been shown in Tables.3 and 
4 for different variations. The analysis has been carried out with Pranditl Number P=0.71. It 
is noticed that the Nusselt Number (Nu) decreases as we move across the boundary plane at 
all axial positions where as its magnitude decreases with increase in the axial distance 
starting from the entry position Z=0. Fixing the other parameters, in general the rate of 

Heat Transfer enhances with D-1 and G at all axial distances. An increasing the suction 
parameter S< 0.3 enhances Nu and depreciates with higher S>0.3 (Tables.3 and 4).   

                        
Fig. 1 : u with D-1 at z = 0                    Fig. 2 : u with D-1 at z = 0 

             I         II              III          I          II             III 
                          D-1 103 5x103      104                                  D-1 103 5x103      104 
 

                             
        Fig. 3 : θ with D-1 at z = 0                    Fig. 4 : θ with D-1 at z = 0 
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Table -1 Stress () at Z=0 
D-1 I II III 
102 77.0146 76.0663 75.1302 

3x102 231.335 228.973 226.64 
5x102 386.013 382.283 378.599 

Table -2 Stress () at Z=1 
D-1 I II III 
102 55.8535 55.1435 54.4468 

3x102 131.845 130.276 128.733 
5x102 207.136 204.711 202.325 

 

S 0.1 0.3 0.5 
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Table -3 Nusselt Number (Nu) at Z=0 

D-1 I II III IV V VI VII VIII 

102 16.962 46.9883 77.0146 -13.0642 -43.0905 -73.1168 150.19 75.1302 

3x102 47.826 139.58 231.335 -43.9282 -135.683 -227.437 456.002 226.64 

5x102 78.761 232.389 386.013 -74.8639 -228.489 -382.115 762.622 378.599 

 
pTable - 4 Nusselt Number (Nu) at Z=1 

D-1 I II III IV V VI VII VIII 

102 12.7298 34.2917 55.8535 -8.83203 -30.3939 -51.9557 108.344 54.4468 

3x102 27.9282 79.8868 131.845 -24.0304 -75.989 -127.948 258.61 128.733 

5x102 42.9864 125.061 207.136 -39.0886 -121.164 -203.238 407.479 202.325 

 

G 10 30 50 -10 -30 -50 100 100 

S 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.5 
 

Nomenclature 
 U  velocity(m/s)  

   p pressure(N/m2)  
   T temperature  in the flow region(K) 
   Kf The coefficient of thermal conductivity(W/mk) 
   Q is the strength of the heat source  
   T0 Mean Temperature 
   qr Radiative heat flux 
Greek Symbols 

o Mean density  
  Density  (Kg/m3) 
  Coefficient of viscosity(Ns/m2) 
 The coefficient of thermal expansion(W/mk) 
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