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ABSTRACT 

The paper ‘Neural Networks in Materials Science and Engineering: A Review of Salient Issues’ has been extensively 
reviewed. The paper has explained neural networks and had clearly presented it as a powerful predictive tool that can be 
trained to solve very complex problems in materials Science and Engineering. Attempts have also been made at 
comparing linear regression model with neural networks and the findings are that neural networks are more 
sophisticated in terms of providing solutions to materials science and engineering problems than linear regression 
model. The paper has revealed that neural networks have found wide applications in materials science and engineering 
particularly in solving very complex problems: problems with established theories but the quantitative determination 
was lacking because of so many independent and interacting parameters. Finally the paper concluded by raising some 
salient issues that had to do with the use of neural networks in materials science and engineering. One of such issues is 
them is application of neural network methodologies, thereby limiting their potential benefit. 
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INTRODUCTION 
There are difficult problems in materials science where the general concepts might be understood but 
which are not as yet amenable to scientific treatment. We are at the same time told that good engineering 
has the responsibility to reach objectives in a cost and time-effective way. Any model which deals with 
only a small part of the required technology is therefore unlikely to be treated with respect. Neural 
network analysis is a form of regression or classification modeling which can help resolve these 
difficulties whilst striving for longer term solutions [1].  
Rouse [2] said ‘’in information technology, a neural network is a system of programs and data structures 
that approximates the operation of the human brain. A neural network usually involves a large number of 
processors operating in parallel each with its own small sphere of knowledge and access to data in its 
local memory. According to Fausett [3] an artificial neural network is an information-processing system 
that has certain performance characteristics in common with biological neural networks. Graupe [4] said 
Artificial neural networks are, as their name indicates, computational networks which attempt to 
simulate, in a gross manner, the networks of nerve cell (neurons) of the biological (human or animal) 
central nervous system. This simulation is a gross cell-by-cell (neuron-by-neuron, element-by-element) 
simulation. Yu [5] artificial neural network (ANN) is a kind of imitation of the biological brain structure 
and the function of information management system which was developed in the 1980s. The researcher 
gave a high rating of the model particularly its ability to solve even nonlinear problems.  
Neural Network (NN) has emerged over the years and has made remarkable contribution to the 
advancement of various fields of endeavor. Whenever we talk about a neural network, we should more 
properly say "artificial neural net-work" (ANN), because that is what we mean most of the time [6]. 
Artificial neural networks are computers whose architecture is modeled after the brain. They typically 
consist of many hundreds of simple processing units which are wired together in a complex 
communication network. Each unit or node is a simplified model of a real neuron which fires (sends off a 
new signal) if it receives a sufficiently strong input signal from the other nodes to which it is connected.  
Artificial neural networks are, as their name indicates, computational networks which attempt to 
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simulate, in a gross manner, the networks of nerve cell (neurons)of the biological (human or animal) 
central nervous system [6]. This simulation is a gross cell-by-cell (neuron-by-neuron, element-by-
element) simulation. It borrows from the neuro-physiological knowledge of biological neurons and of 
networks of such biological neurons. It thus differs from conventional (digital or analog) computing 
machines that serve to replace, enhance or speed-up human brain computation without regard to 
organization of the computing elements and of their networking. Humans are born with as many as 100 
billion neurons, see fig. 1 for the illustration of a biological neuron. Most of these are in the brain, and 
most are not replaced when they die, in spite of our continuous loss of neurons, we continue to learn. 
Even in cases of traumatic neural loss, other neurons can sometimes be trained to take over the functions 
of the damaged cells. In similar manner, artificial neural network can be designed to be insensitive to 
small damage to the network, and the network can be retrained in cases of significant damage (e.g. loss of 
data and some connections). 
An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way 
biological nervous systems, such as the brain, process information. The key element of this paradigm is 
the novel structure of the information processing system. It is composed of a large number of highly 
interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like 
people, learn by example. According to Michael Mozer of the University of Colorado, “The neural network 
is structured to perform nonlinear Bayesian classification” A neural network could also be described as a 
system composed of many simple processing elements operating in parallel whose function  is 
determined by network structure, connection strengths, and the processing performed at computing 
elements or nodes [7].   
It resembles the brain in two respects:  1. Knowledge is acquired by the network through a learning 
process.   
2. Interneuron connection strengths known as synaptic weights are used to store the knowledge [6]. 
Neural networks are now a prominent feature of materials science with rapid progress in all sectors of 
the subject. It is premature, however, to claim that the method is established. There are genuine 
difficulties caused by the often incomplete exploration and publication of models. The development and 
processing of materials is complex. Although scientific investigations on material shave helped greatly in 
understanding the underlying phenomena, there remain many problems where quantitative treatments 
are dismally lacking. For example, whereas dislocation theory can be used to estimate the yield strength 
of microstructure, it is not yet possible to predict the strain hardening coefficient of an engineering alloy. 
It follows that the tensile strength, elongation, fatigue life, creep life and toughness, all of which are vital 
engineering design parameters, cannot even be estimated using dislocation theory. A more 
comprehensive list of what needs to be done in this context is presented in Table 1[8]. 
 

Table l. Mechanical properties that need to be expressed in quantitative models as a function of 
large numbers of variables. 

Property Relevance  
Yield strength 
Ultimate tensile strength 
YS/UTS ratio 
Elongation 
Uniform elongation 
Non-uniform elongation 
Toughness 
Fatigue 
Stress corrosion 
Creep strength 
Creep ductility 
Creep-fatigue 
Elastic modulus 
Thermal expansivity 
Hardness 
Age hardening heat treatment 
Sand mould preparation 
 

All structural applications 
All structural applications 
Tolerance to plastic overload 
Resistance to brittle fracture 
Related to YSand UTS 
Related to inclusions 
Tolerance to defects 
Cyclic loading, Life assessments 
Slow corrosion &cracking 
High temperature service 
Safe design 
Fatigue at creep temperatures 
Deflection, stored energy 
Thermal fatigue/stress/shock 
Tribological properties 
Ageing time and temperature 
Mould strength and other properties 
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The lack of progress in predicting mechanical properties is because of their dependence on large numbers 
of variables, Nevertheless, there are clear patterns which experienced metallurgists recognize and 
understand. For example, it is well understood that the toughness of steel can be improved by making its 
microstructure more chaotic so that propagating cracks are frequently deflected. It is not clear exactly 
how much the toughness is expected to improve, but the qualitative relationship is well established on 
the basis of a vast number of experiments. Neural network models are extremely useful in such 
circumstances, not only in the study of mechanical properties but wherever the complexity of the 
problem is overwhelming from a fundamental perspective and where simplification is unacceptable. 
There are many established theories in materials science and engineering that have been proven 
empirically through several experiments but are difficult to predict using simple linear and multiple 
linear regression models: artificial neural networks comes handy in such situations [9].  
The objective of this review is to outline some areas of application of artificial neural network in materials 
science and engineering and to raise salient issues associated with the application. 
 

 
Fig. 1 Biological neuron [4] 

 
PHYSICAL AND EMPIRICAL MODELS 
There have been some established theories in materials science and engineering like the relationship 
between porosity and thermal conductivity or the relationship between clay content and the strength of a 
moulding sand mixture. The theories of these relationships have been well studied and proven 
empirically through instrumental measurements. However, as Bhadeshia [1] puts it; A good theory must 
satisfy at least two criteria. It must describe a large class of observations with few arbitrary parameters. 
And secondly, it must make predictions which can be verified or disproved. Physical models, such as the 
crystallographic theory of marten site,  satisfy both of these requirements. Thus, it is possible to predict 
the habit plane, orientation relationship and shape deformation of marten site with a precision greater 
than that of most experimental techniques, from knowledge of just the crystal structures of the parent 
and product phases. By contrast, a linear regression equation requires at least as many parameters as the 
number of variables to describe the experimental data, and the equation itself may not be physically 
justified. Neural networks fall in this second category of empirical models; we shall see that they have 
considerable advantages over linear regression. In spite of the large number of parameters usually 
necessary to define a trained network, they are useful in circumstances where physical models do not 
exist [1]. 
Linear Regression 
Linear regression is normally used to determine the best line of fit for a graphical model where you have 
the dependent variable (y) and independent variable(x).  It provides the best fit for the empirical values 
and therefore can be used for prediction purposes [9, 10]. Simple linear regression is used when the 
independent variable is one, but when the number of independent variables is in multiple of one and 
above, multiple linear regressions is used. As the name implies linear regression applies to phenomena 
that are linear, predictions become inaccurate when the behavior of the system changes and becomes 
nonlinear. For instance in the elastic deformation of a material once the elastic limit is exceeded the 
relationship between the stress and strain changes, in like manner in the strength –carbon relationship in 
steel as the carbon content in steel is increased the strength is increased but there comes a point when 
the steel will change to cast iron and the properties also change.In instances like these linear regression 
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becomes inadequate as a prediction model. Equation 1 shows a typical simple linear regression equation 
expressing the relationship between hardness (y) the dependent variable, and distance below the surface 
of quenched carbon steel (x) the independent variable [9]. 
 
Y (H)= 946.57- 156.56X(1) 
 
Equation 2 is an example of a multiple linear regression model. The developed mathematical model for 
the relationship between bulk density and the two variables of clay and moisture content where Bulk 
density is Y2; Clay content is X1; and Moisture content is X2 [10]. 
 
�� = 1.48 + 0.09�� − 0.059��                                                            (2) 
 
Though multiple regression equation may make provision for interacting variables, when the number of 
variables becomes so many computation also becomes difficult and by implication the accuracy of the 
result. This is because some dependent variables may depend on several independent variables. 
According to Bhadeshia [1] of course, there is no justification for the choice of the particular form of 
relationship. This and other difficulties associated with ordinary linear regression analysis can be 
summarized as follows: 
Difficulty (a) A relationship has to be chosen before analysis. 
Difficulty (b) the relationship chosen tends to be linear, or with non-linear terms added together to form a 
psuedo-1inear equation. 
Difficulty (c) The regression equation, once derived, applies across the entire span of the input space. This 
may not be reasonable. For example, the relationship between strength and the carbon concentration of 
an iron-base alloy must change radically as steel gives way to cast iron. 
The main  advantages  of  ANN  as  compared  to  multiple regression  model  include:  1)  ANN  does  not  
require any prior  specification of  suitable  fitting  function, and 2) ANN also has a universal 
approximation capability to approximate almost all kinds of non-linear functions including  quadratic  
functions,  whereas  multiple regression  model  is  useful  only  for  quadratic approximations.  There  are  
some  studies  in  the literature  where  model  were  developed  based  on multiple  regression model  and  
ANN  using  the  same experimental design. For example, Elmabrouk and Kalkanli, [11]  reported  the  
comparison of ANN and multiple regression model  in  the  lipase-catalyzed synthesis of palm-based  wax  
ester,  and  they  suggested  the superiority of ANN over multiple regression model . Both  the  ANN  and  
multiple  regression  model techniques were recently compared for their predictive and generalization  
capabilities,  sensitivity  analysis and  optimization  efficiency  in  fermentation  media optimization.  It 
was  found  that  the ANN predicted model  has  higher  accuracy and  better generalization capability  
than  multiple  regression  model,  even  with the  limited  number  of  experiments.  In  another  study,  
the multiple  regression  model  and  ANN  methodologies were  applied  for  predicting  the  amount  of  
zinc  by flame  atomic  absorption  spectrometry  (FAAS)  in  fish samples.  The  results  which  were  
obtained  through multiple  regression  model  were  then  compared  with those  through  ANN and the 
same conclusion as the preceding above was drawn [11]. 
 
NEURAL NETWORKS 
Historical Background 
The development of artificial neural networks began approximately 50 years ago, motivated by a desire 
to try both to understand the brain and to emulate some of its strengths. Early successes were 
overshadowed by rapid progress in digital computing. Also, claims made for capabilities of early models 
of neural networks proved to be exaggerated, casting doubts on the entire field. Recent renewed interest 
in neural networks can be attributed to several factors. Training techniques have been developed for the 
more sophisticated network architectures that are able to overcome the shortcomings of the early, simple 
neural nets. High-speed digital computers make the simulation of neural processes more feasible. 
Technology is now available to produce specialized hardware for neural networks. However, at the same 
time that progress in traditional computing has made the study of neural networks easier, limitations 
encountered in the inherently sequential nature of traditional computing have motivated some new 
directions for neural networks research. Fresh approaches to parallel computing may benefit from the 
study of biological neural systems which are highly parallel [4]. The history of neural networks can be 
divided into several periods: from when developed models of neural networks based on their 
understanding of neurology, to when neuroscience became influential in the development of neural 
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networks. Psychologists and engineers also contributed to the progress of neural network simulations. 
Neurally based chips are emerging and applications to complex problems are being developed. Clearly, 
today is a period of transition for neural network technology [6] 
Architecture of Neural Networks 
The arrangement of neurons into layers and the connection patterns within and between layers is called 
the net architecture. Many neural nets have an input layer in which the activation of each unit is equal to 
an external input signal. The net illustrated in fig. 2 consists of input units, output units, and one hidden 
unit (a unit that is neither an input unit nor an output unit). 
Neural nets are often classified as single layer or multilayer. In determining the number of layers, the 
input units are not counted as a layer, because they perform no computation. Equivalently, the number of 
layers in the net can be defined to be the number of layers of weighted interconnected links between the 
slabs of neurons. This view is motivated by the fact that the weights in a net contain extremely important 
information. The net shown in fig.3 has two layers of weights.  The single-layer and multi-layer nets 
illustrated in fig.4 and fig. 5 are examples of feed-forward nets- nets in which the signals flow from the 
input units to the output units, in a forward direction. The fully interconnected competitive net in fig.6 is 
an example of a recurrent net, in which there are closed-loop signal path from a unit back to itself. 

 
 

Fig.2 A Very Simple Neural Network [4] 
 
Concept of Neural Network 

 
 

Fig.3Concept of Neural Network [11] 
 
The  neural  network  resembles  biological  nervous systems,  is  a  parallel  distributed  information-
processing  system   that  consists  of  processing elements  called  nodes  interconnected  by  the  signal 
channels called connections. The output of each node can be connected to the input of other nodes via 
these connections.  Each  connection  has  an  associated weight  that  determines  the  strength  of  the  
signal passed  along  the  connection [11].  Such networks are programmed by applying training patterns 
that fix the output states of the nodes. A learning algorithm then adjusts the connection weights in 
response to the training patterns where  
net = w1x1 + w2x2 + w3x3                                                                                (3)  
The weighted  sum  of  the  inputs  are  sent  through various  layers  of  nodes  to  the  output  node.  The 
activation  function  of  the  net  f(net)  is  then  compared with  the  pre-determined  threshold  value  Ө. 
The output node will give an output signal if activation function is greater than the threshold value.  
 
f(net) = y                                                                                                       (4) 
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Y=      �
1 ��� > �� = �

0 ��� < �
�(5) 

 
 

 
 

Fig.4  A Single- Layer Neural Net [4] 
 

 
Fig. 5 A Multilayer Neural Net [4] 
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Fig. 6. Competitive Layer [4] 

 
Single-Layer Net 
A single –layer net has one layer of connection weights. Often, the units can be distinguished as inputs 
units, which receive signals from the outside world, and output units, from which the response of the net 
can be read. By contrast, the Hopfield net architecture, shown in fig.7 is an example of a single-layer net in 
which all units function as both input and output units. 
Multilayer Net 
A multilayer net is a net with one or more layers (or levels) of nodes (the so called hidden units) between 
the inputs units and the output units. Typically, there is a layer of weights between two adjacent levels of 
units (input, hidden, or output). Multilayer nets can solve more complicated problems than can single-
layer nets, but training may be more difficult. However, in some cases, training may be more successful, 
because it is possible to solve a problem that a single layer net cannot be trained to perform correctly at 
all. 
Competitive Layer 
A competitive layer forms a part of a layer number of neural networks. Typically, the interconnections 
between neurons in the competitive layer are not shown in the architecture diagrams for such nets. An 
example for the architecture for a competitive layer is given in fig.6, the competitive interconnections 
have weights of –Є. 
 

 
Fig.7 Discrete Hopfield Net [4] 

 
Setting the Weights 
In addition to the architecture, the method of setting the values of the weights (training) is an important 
distinguishing characteristic of different neural nets. For convenience, we shall distinguished two types of 
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training- supervised and unsupervised- for a neural network; in addition, there are nets whose weights 
are fixed without an iterative training process. 
Supervised Training 
In perhaps the most typical neural net setting, is accomplished by presenting a sequence of training 
vectors, or patterns, each with an associated target output vector. The weights are then adjusted 
according to a learning algorithm. This process is known as supervised training.  
Unsupervised Training 
Self-organizing neural nets group similar input vectors together without the use of training data to specify 
what a typical member of each group looks like or to which group each vector belongs.  A sequence of 
input vectors is provided, but no target vectors are specified. The net modifies the weights so that the 
most similar input vectors are specified. The net modifies the weights so that the most similar input 
vectors are assigned to the same output (cluster) unit. The neural net will produce an exemplar 
(representative) vector for each cluster formed [4].  
The back-propagation algorithm  
In order to train a neural network to perform some task, we must adjust the weights of each unit  in such 
a way that the error between the desired output and the actual output  is reduced. This Process requires 
that the neural network compute the error derivative of the weights (EW). In  other words, it must 
calculate how the error changes as each weight  is increased or decreased  slightly. The back propagation 
algorithm is the most widely used method for determining the EW 
 
NEURAL NETWORKS APPLICATIONS IN MATERIAL SCIENCE AND ENGINEERING 
Neural networks have had a significant impact on the development of materials and associated processes. 
This is because they represent a transparent and quantitative method which is able to deal with 
sophisticated problems typical in materials science [1]. Below are some of the areas of applications of 
neural networks in material science and engineering. The list of problems in materials science and 
engineering that can be solved using neural networks is in-exhaustible. 
Effect of Quartz and Heat Treatment on the Corrosion Properties of Ceramic Coating 
Elmabrouk and Kankali, [11] studied the effect of quartz and heat treatment on the corrosion properties 
of ceramic coating using neural network the result of which they compared with results they earlier on 
got using multiple linear regression. According to the researchers prediction of the effects of various heat 
treatments at temperatures (  500,550,  and  600˚C  )  at  different  times  (60  &120)min and with quartz 
addition  in  the  range  (0-15)%  on  the  acid  corrosion  rate  of  the  resultant coating  of  low  carbon  
alloyed  steel with  (0.2)%C was  achieved  by  using  artificial  neural  network  ( ANN ).  
In the work two models were developed for predicting the acid corrosion  rate and these were Multiple 
linear regression model and artificial neural network (ANN). First, multiple regression model was used 
for predicting the amount of acid corrosion rate. Then, the independent variables, namely heat treatments 
temperatures, addition times, and with quartz addition were fed as inputs to an artificial neural network, 
while the output of the network was the acid corrosion rate. A multilayer feed-forward network was 
trained by the sets of input-output patterns using quick propagation algorithm. Finally, the two 
methodologies were compared for their predictive capabilities.  Their  work indicated  that  the  ANN  was  
much  more  accurate  in predicting the acid corrosion rate in comparison to the multiple linear 
regression model . 
Thin Films and Superconductors 
A lot of the materials science type issues about thin films naturally involve deposition and 
characterization. The deposition process can be very complicated to control and is ideally suited for 
neural network applications. Neural networks have been used to interpret Raman spectroscopy data to 
deduce the superconducting transition temperature of YBCO thin films during the deposition process; to 
characterize reflection high-energy electron diffraction patterns from semiconductor thin films in order 
to monitor the deposition process, to rapidly estimate the optical constants of thin films using the 
computational results of a physical model of thin films, and there are numerous other similar examples. 
There is one particular application which falls in the category of "alloy design"; Asada,et al,[12]. 
Bhadeshia, [8] trained a neural network on a database of (Y1-XCaX)Ba2Cu3Ozand Y(Ba2-xCax)Cu3Oz, where z 
'is generally less than 7, the ideal numberof oxygen atoms. The output parameter was the 
superconducting transition temperature as a function of x and z. They were thus able to predict the 
transition temperature of YBa2Cu3Oz doped with calcium. It was demonstrated that the highest 
temperature is expected for x=0.3 and z=6.5 in (Y1-xCax)Ba2Cu3Oz whereas a different behaviour occurs for 
Y(Ba2-xCax)Cu3Oz. 

Ihom and Offiong 



IAAST Vol 6[3] September  2015 24 | P a g e         ©2015 Society of Education, India 

Composites 
There are many applications where vibration information can be used to assess the damage in composite 
structures e.g. Acoustic emission signals have been used to train a neural network to determine the burst 
pressure of fiberglass epoxy pressure vessels.  There has even been an application in the detection of 
cracks in eggs. One different application is in the optimization of the curing process for polymer-matrix 
composites made using thermosetting resins. 
An interesting application is the modeling of damage evolution during forging of AlSiC particle reinforced 
brake discs. The authors were able to predict damage in a brake component previously unseen by the 
neural network model. Hwang et al in Bhadeshia [1] compared prediction of the failure strength of carbon 
fibre reinforced polymer composite, made using a neural network model, against the Tsai-Wu-theory and 
an alternative hybrid model. Of the three models, the neural network gave the smallest root-mean square 
error. Nevertheless, the earlier comments about the validity of the neural network in extrapolation 
etc.remain as a cautionary note in comparisons of neural and physical models. 
Steel Processing and Mechanical Properties 
Hot Rolling 
The properties of steel are greatly enhanced by the rolling process. It is possible to cast steel into virtually 
the final shape but such a product will not have the quality or excellence of a carefully rolled product. 
Singh et al, in Bhadeshia [1] have developed a neural network model in which the yield and tensile 
strength of the steel is estimated as a function ofsome108 variables, including the chemical composition 
and an array of rolling parameters. Implicit in the rolling parameters is the thermal history and 
mechanical reduction of the slab as it progresses to the final product. The training data come from 
sensors on the rolling mill. There is therefore no shortage of data, the limitation in this case being the 
need to economies on computations. There are some exciting results which make sense from a 
metallurgical point of view, together with some novel predictions on a way to control the yield to tensile 
strength ratio. 
A similar model by Korczak et al,[13] uses microstructural parameters as inputs and has been applied to 
the calculation of the ferrite grain size and property distribution through the thickness of the final plate. 
Vermeulen et al, [15] have similarly modeled the temperature of the steel at the last finishing stand. They 
demonstrated that it is definitely necessary to use anon-linear representation of the input variables to 
obtain an accurate prediction of the temperature. The control of strip temperature on a hot strip millrun 
out table has also been modeled by Loney,et al, [14]. 
Heat Treatment 
AJominy test is used to measure the harden ability of steel during heat treatment. Vermeulen et al, [15] 
have been able to accurately represent the Jominy hardness profiles of steels as a function of the chemical 
composition and austenitising temperature. 
Mechanical Properties 
There are many other examples of the use of neural networks to describe the mechanical properties of 
steels; Dumortier etal., in Bhadeshia [8] have modeled the properties of micro-alloyed steels; Milykoski, in 
Bhadeshia [8] has addressed the problem of strength variations in thin steel sheets; microstructure 
property relationships of C-Mn steels, the tensile properties of mechanically alloyed iron with a 
comparison with predictions using physical models; and the hot-torsion properties of austenite. 
Polymeric and Inorganic Compounds 
Neural network methods have been used to model the glass transition temperatures of amorphous and 
semi-crystalline polymers to an accuracy of about 10K, and similar models have been developed for 
relaxation temperatures, degradation temperature, refractive index, tensile strength, elongation, notch 
strength, hardness, etc. The molecular structure of the monomeric repeating unit is described using 
topological indices from graph theory. The techniques have been exploited, for example, in the design of 
polycarbonates for increased impact resistance. In another analysis, the glass transition temperature of 
linear homopolymers has been expressed as a function of the monomer structure, and the model 
has been shown to generalize to unseen data to an accuracy of about 35K [3]. 
Comparison with Quantum Mechanical Calculations 
There is an interesting study which claims that neural networks are able to predict the equilibrium bond 
length, bond dissociation energy and equilibrium stretching frequency more accurately, and far more 
rapidly than quantum mechanical calculations. The work dealt with diatomic molecules such as LiBr, 
using thirteen inputs: atomic number, atomic weight (to include isotope effects), valence electron 
configuration (s,p,d, .f electrons) for both atoms, and the overall charge. The corresponding quantum 
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mechanical calculations used effective core potentials as inputs. It was found that all three molecular 
properties could be predicted more accurately using neural networks, with a considerable 
reduction in the computational effort. Such a comparison of a physical model with one which is empirical 
is not always likely to be fair. In general, an appropriate neural network model should perform 
Badly when compared with a physical model, when both are presented with precisely identical data. This 
is because the neural network can only learn from the data it is exposed to. By contrast, the physical 
model will contain relationships which have some justification in science, and which impose constraints 
on the behaviour of the model during extrapolation. As a consequence, the neural network is likely to 
violate physical principles when used without restriction. The continuous cooling transformation curve 
model is an example where the neural network produces information in forbidden domain and produces 
jagged curves, which a physical model using the same data would not because the form of the curves 
would be based on phase transformation theory [8]. 
Ceramics 
Ceramic Matrix Composites 
Ceramic matrix composites rely on a weak interface between the matrix and fibre. This introduces slip 
and deboning during deformation, thus avoiding the catastrophic propagation of failure. The 
mathematical treatment of the deformation has a large number of variables with many fitting parameters. 
For an Al203 matrix Sic whisker composite a constitutive law has been derived using an artificial neural 
network, using inputs generated by finite element analysis. Hybrid models can be created by training 
neural networks on data generated by physical models [3]. 
Machining and Processing 
There are many examples where neural networks have been used to estimate machine-tool wear. For 
example, Ezuguwu et al., (1995) have modeled the tool life of a mixed-oxide ceramic cutting tool as a 
function of the feed rate, cutting speed and depth of cut. Tribology issues in machining, including the use 
of neural networks, have been reviewed by Jahanmir. Neural networks are also used routinely in the 
control of cast ceramic products made using the slip casting technique, using variables such as the 
ambient conditions, raw material information and production line settings. In another application, 
scanning electron microscope images of ceramic powders were digitized and processed to obtain the 
particle boundary profile; this information was then classified using a neural approach, with exceptionally 
good results even on unseen data. 
 
REVIEW OF SALIENT ISSUES IN THE USE OF NEURAL NETWORKS IN MATERIALS SCIENCE AND 
ENGINEERING 
Neural networks are now a prominent feature of materials science with rapid progress in all sectors of 
the subject. It is premature, however, to claim that the method is established. The use of computer 
modeling techniques is extensive in scientific research. Artificial neural networks are now well 
established, and prominent in the literature, when computational based approaches are involved. The 
materials science and engineering research community has and continues to take advantage from new 
developments in these areas with different applications regularly emerging, along with the degree of 
sophistication utilised. However, with this increased use there is unfortunately a growing tendency for 
the misapplication of neural network methodologies, limiting their potential benefit. Central to the 
problem is the use of over complicated networks that are frequently mathematically indeterminate, and 
by using limited data for training and testing. This problem is not unique to one particular field, but has 
prompted the authors to bring it to the attention of the materials and engineering research community in 
order to elaborate. Neural networks have proved to be powerful and popular in dealing with complex 
problems of the type typical in materials science and engineering. Indeed, as pointed out by Abrahart et 
al.,[17] aside from materials science, there are reviews or extended summaries of the applications of 
networks in the fields of hydrological sciences, atmospheric sciences, civil engineering, process 
engineering and structural engineering including computer and electrical/electronic engineering. This 
reflects the generic nature of the method. However, the way in which the method is applied varies widely 
and it would be useful to assess the advantages and disadvantages of the different approaches and the 
way in which the results are presented and published. It has previously been pointed out, when 
discussing neural networks in the hydro-sciences, that in many cases the model building process is 
described poorly, making it difficult to assess the optimality of the results obtained. The issues raised 
here may hopefully prevent others and potentially new researchers from continued misuse of neural 
networks in the future [1].We note that at the present state of neural networks their range of adaptability 
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is limited. However, their design is guided to achieve this simplicity and self-organization by its gross 
simulation of the biological network that is (must be) guided by the same principles [4]. 
Recent renewed interest in neural networks can be attributed to several factors. Training techniques have 
been developed for the more sophisticated network architectures that are able to overcome the 
shortcomings of the early, simple neural nets. High-speed digital computers make the simulation of 
neural processes more feasible. Technology is now available to produce specialized hardware for neural 
networks. However, at the same time that progress in traditional computing has made the study of neural 
networks easier, limitations encountered in the inherently sequential nature of traditional computing 
have motivated some new directions for neural networks research. Fresh approaches to parallel 
computing may benefit from the study of biological neural systems which are highly parallel [3].The 
application of neural networks in materials science is a rapidly growing field. There are numerous papers 
being published but the vast majority is of little use other than to the authors. This is because the 
publications almost never include detailed algorithms, weights and databases of the kind necessary to 
reproduce the work. Work which cannot be reproduced or checked goes against the principles of 
scientific publication. The minimum information required to reproduce a trained network is the structure 
of the network, the nature of the transfer functions, the weights corresponding to the optimized network 
and the range of each input and output variable. Such detailed numerical information is unlikely to be 
accepted for publication in journals. There is now a world wide website where this information can be 
logged for common access [8]. The major issues of concern today are the scalability problem, testing, 
verification, and integration of neural network systems into the modern environment. Neural network 
programs sometimes become unstable when applied to larger problems. The defense, nuclear and space 
industries are concerned about the issue of testing and verification. The mathematical theories used to 
guarantee the performance of an applied neural network are still under development. The solution for the 
time being may be to train and test these intelligent systems much as we do for humans. Also there are 
some more practical problems like:  the operational problem encountered when attempting to simulate 
the parallelism of neural networks instability to explain any results that they obtain. Networks function as 
"black boxes" whose rules of operation are completely unknown [6].  
 

CONCLUSION 
The paper ‘neural networks in materials science and engineering: a review of salient issues’ has been 
extensively reviewed. The paper has explained neural networks and had clearly presented it as a 
powerful predictive tool that can be trained to solve very complex problems. Attempts have also been 
made at comparing linear regression model with neural networks and the findings are that neural 
networks are more sophisticated in terms of providing solutions to materials science and engineering 
than linear regression model. The paper has revealed that neural networks have found wide applications 
in materials science and engineering particularly in solving very complex problems: problems with 
established theories but the quantitative determination was lacking because of so many independent and 
interacting parameters. Finally the paper concluded by raising some salient issues that had to do with the 
use of neural networks in materials science and engineering as follows: 
The application of neural networks in materials science is a rapidly growing field.The mathematical 
theories used to guarantee the performance of an applied neural network are still under development. 
The solution for the time being may be to train and test these intelligent systems much as we do for 
humans.  
Also there are some more practical problems like:  the operational problem encountered when 
attempting to simulate the parallelism of neural networks instability to explain any results that they 
obtain. Networks function as "black boxes" whose rules of operation are completely unknown. The use of 
the ANN is therefore subject to abuse.  
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