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ABSTRACT 

Matrix multiplication is a fundamental operation in image and signal processing applications, often requiring high-speed 
and resource-efficient computation. This paper presents the design and FPGA implementation of a systolic array-based 
matrix multiplier optimized for real-time processing tasks. The proposed architecture is implemented on a Xilinx Spartan-
6 FPGA and configured to compute 8×8 fixed-point matrix products using a grid of 64 processing elements (PEs). Each PE 
performs a multiply-and-accumulate (MAC) operation, arranged in a pipelined two-dimensional array for efficient data 
flow. The system achieves high throughput with minimal latency, utilizing only 15.8% of available LUTs and 55.2% of DSP 
resources, and operates at an estimated frequency of 75 MHz. The design is scalable, modular, and suitable for embedded 
platforms where low power and deterministic performance are critical. Experimental results confirm the suitability of the 
architecture for real-time image filtering and signal transformation tasks, making it a viable solution for lightweight 
FPGA-based acceleration. 
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INTRODUCTION 
Matrix multiplication serves as the computational backbone for a vast range of applications in image 
processing, signal processing, machine learning, and high-speed computing. The growing demand for real-
time data processing in these domains has propelled research into developing efficient hardware 
implementations of matrix multipliers. While software-based approaches using general-purpose 
processors (GPPs) and digital signal processors (DSPs) offer flexibility, they often fall short in meeting the 
high-throughput and low-latency requirements of modern applications. 
Recent studies have demonstrated the effectiveness of Field Programmable Gate Arrays (FPGAs) in 
accelerating matrix operations by leveraging their inherent parallelism and configurability. R. P. Singh et 
al. [1] explored a 32-bit reconfigurable RISC processor integrated with a matrix multiplier for Beta ISA, 
showcasing FPGA's capability in custom processor design. M. Ashraf et al. [2] focused on parallel 
implementation of 2D Discrete Wavelet Transform (2D-DWT) by eliminating Read After Write (RAW) 
dependency, which is critical for real-time applications. These works highlight how FPGA platforms can be 
tailored to optimize specific computational kernels. 
Further advancements in arithmetic architectures have also contributed to the improvement of matrix 
multiplication on FPGAs. S. V. Mogre and D. G. Bhalke [3] implemented a high-speed matrix multiplier using 
Vedic mathematics, demonstrating the efficiency of ancient arithmetic principles in reducing logic delay on 
FPGAs. O. Mencer et al. [4] developed PAM-Blox for adaptive computing, a pioneering work on FPGA design 
frameworks tailored for dynamic workloads. Moreover, the increasing integration of FPGAs into deep 
learning hardware has pushed for more scalable and bandwidth-efficient designs. M. M et al. [5] presented 
a sparse matrix multiplier architecture optimized for deep neural networks, achieving high performance 
with reduced memory overhead. Polynomial multipliers, another class of arithmetic accelerators, have seen 
significant optimization efforts. J. Hu et al. [6] introduced a case study on BIKE, showcasing FPGA-optimized 
polynomial multiplication over commutative rings. Additionally, S. Kumar et al. [7] proposed symmetrical 
three-term Karatsuba multipliers designed specifically for FPGA deployment, illustrating the trend towards 
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energy-efficient and scalable multiplier designs. Tamilamuthan and Geetha [22] highlighted efficient power 
conversion techniques, relevant for FPGA power optimization. Their IoT-based energy management 
system [23] supports intelligent hardware control, applicable in matrix processing. Insights from 
bidirectional converter architectures [24] aid in designing parallel, high-speed, and fault-tolerant matrix 
multipliers on FPGA. 
These prior contributions underscore the relevance of optimized matrix multiplication architectures in 
reconfigurable hardware environments. However, there remains a need for a unified design that balances 
speed, area, and power for both image and signal processing pipelines. This paper addresses this gap by 
presenting an efficient systolic array-based matrix multiplier architecture implemented on a modern FPGA 
platform, optimized for throughput and resource utilization. 
 
LITERATURE REVIEW 
Matrix multiplication on FPGAs has been extensively explored, with numerous architectures proposed to 
improve speed, area efficiency, and energy consumption. One of the early advancements in FPGA-based 
matrix computation was the use of distributed arithmetic and sparse matrix structures. Chandrasekaran 
and Amira [8] proposed a novel sparse orthonormal basis coding (OBC)-based distributed arithmetic 
architecture for matrix transforms, which demonstrated significant improvements in hardware efficiency 
for transform computations. To address performance bottlenecks in large matrix multiplications, Asgari et 
al. [9] introduced MEISSA, a scalable systolic array architecture that efficiently utilizes FPGA resources and 
supports parallel data movement for real-time acceleration. 
Polynomial multiplication has also been a focal area due to its relevance in cryptographic and signal 
processing applications. Zhang et al. [10] developed a lightweight and efficient Schoolbook polynomial 
multiplier tailored for the Saber cryptographic protocol, optimizing logic usage without compromising 
speed. Similarly, Belkacemi et al. [11] designed a high-performance matrix multiplier core with 
parameterized scalability, optimized for Xilinx Virtex FPGAs. Their architecture achieved full matrix output 
every clock cycle, indicating the feasibility of real-time matrix computation using custom cores. Expanding 
the use of FPGAs beyond basic multiplication, Lin et al. [12] demonstrated a reservoir computing model 
with optimized reservoir node architecture, implemented on FPGA for fast temporal data processing. This 
approach blends neural network principles with hardware acceleration, signifying the growing interest in 
hybrid computation models. Zoni et al. [13] further contributed to multiplier designs by presenting flexible 
and scalable architectures for large binary polynomial multiplication, focusing on reusability and 
modularity for next-generation hardware systems. 
In the domain of binary field arithmetic, Imaña [14] proposed efficient FPGA implementation strategies for 
field multipliers based on irreducible trinomials, applicable in secure communications and elliptic curve 
cryptography. Additionally, Joshi et al. [15] explored FPGA-based implementations of iterative solvers, such 
as the floating-point Gauss-Seidel algorithm, underscoring the adaptability of FPGAs for matrix equation 
solving in engineering simulations. 
Together, these studies form the foundation for optimized matrix computation architectures. However, 
most existing works either prioritize throughput without energy considerations or offer energy-efficient 
designs at the cost of speed. The data conversion implementation algorithm referred by converter and data 
transfer topology.  The present study aims to bridge this trade-off by proposing an optimized, balanced 
architecture suitable for both high-speed and resource-constrained applications in image and signal 
processing. 
 
PROPOSED METHODOLOGY 
This section outlines the architectural approach, computational model, and hardware design flow 
employed in implementing the matrix multiplier on an FPGA platform. The focus is on maximizing speed 
and area efficiency while ensuring scalability for real-time image and signal processing applications. 
Architectural Overview 
The proposed design utilizes systolic array architecture to perform matrix multiplication, which enables 
high-throughput data processing by exploiting spatial and temporal parallelism. The systolic structure 
allows for pipelined data movement across processing elements (PEs), where each PE performs multiply-
accumulate (MAC) operations. Unlike conventional row-column multiplication, this architecture ensures 
consistent data flow and minimizes memory bottlenecks, making it highly suitable for hardware 
implementation. 
Computational Model 
Let matrices A and B be of size M×N and N×P, respectively. The result matrix C of size M×P is computed as: 

Ci,j = ∑ Ai, k × Bk, j୒
୩ୀଵ       (1) 



IAAST Vol 15[3] September 2025 22 | P a g e                           © Author 

To efficiently map this computation onto the systolic array, each processing element in the array is 
configured to handle a MAC operation. Inputs are streamed row-wise from matrix A and column-wise from 
matrix B, with intermediate results stored locally in PEs to reduce routing complexity. 
Data Flow and Memory Management 
Matrix elements are read sequentially from block RAM (BRAM) or external memory, loaded into shift 
registers, and propagated across the array in a synchronized manner. Each PE receives partial data streams 
and performs local computations. The final result of each matrix cell is accumulated within the PE before 
being written back to output memory. This streaming-based approach reduces latency and avoids global 
memory access during intermediate operations. 
Fixed-Point Optimization 
To optimize for speed and resource usage, fixed-point arithmetic is adopted instead of floating-point 
operations. This decision significantly reduces slice usage and DSP block demand on the FPGA, allowing 
more PEs to be instantiated in parallel. Word-length analysis was performed to balance between precision 
loss and performance gain. A 16-bit fixed-point representation was found to be sufficient for image and 
signal processing accuracy requirements. 
 

 
Figure.1 8×8 fixed-point matrix 

FPGA Implementation Flow 
The complete system is modeled in VHDL and synthesized using Xilinx Vivado Design Suite. The design 
flow includes functional simulation, logic synthesis, technology mapping, placement and routing, followed 
by timing simulation and bit stream generation. Figure 1 shows the FPGA design workflow adopted. The 
target platform is the Xilinx Artix-7 (XC7A100T), chosen for its balance between logic resources, speed, and 
low power consumption. 
 
IMPLEMENTATION AND RESULTS 
This section presents the FPGA implementation of the proposed systolic array-based matrix multiplier and 
evaluates its performance in terms of resource utilization, timing, and scalability. The design targets the 
Spartan-6 FPGA platform, emphasizing low-cost deployment with moderate performance constraints, ideal 
for embedded image and signal processing applications. 
Target Device and Tools 
The hardware implementation was carried out on the Xilinx Spartan-6 XC6SLX45 FPGA using the Xilinx 
ISE Design Suite 14.7. VHDL was used as the hardware description language. The primary goal was to 
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achieve an efficient realization of an 8×8 matrix multiplication unit while minimizing logic utilization and 
ensuring reliable operation within timing constraints. 
Matrix Multiplier Configuration 
The implemented matrix multiplier is configured to perform fixed-point arithmetic with a 16-bit word 
length. The matrix size is fixed at 8×8, suitable for moderate-resolution image filtering and feature 
extraction tasks. The systolic array consists of 64 processing elements (PEs), each executing a multiply-
accumulate operation. Inputs are supplied in a row-column streaming manner, and results are stored in 
internal memory. 

 
Figure. 2 Block Diagram of Matrix Vector Multiplication 

Resource Utilization Analysis 
The synthesis results for the 8×8 multiplier on Spartan-6 are summarized in Table 1. The design focuses 
on LUT (Look-Up Table) utilization, which directly reflects the core arithmetic and control logic efficiency. 
 

Table 1: FPGA Resource Utilization (Spartan-6) 
Resource Type Used Available Utilization (%) 

LUTs 4,320 27,288 15.80% 
Slice Registers 1,080 54,576 1.90% 
BRAM (18 Kb) 4 116 3.40% 

DSP48A1s 32 58 55.20% 
Max Frequency – – 75 MHz (estimated) 

 
The design shows a moderate usage of LUTs and DSP blocks, leaving room for additional processing 
modules or pipeline extensions. The system operates reliably up to an estimated 75 MHz clock frequency. 
Performance Summary 
The proposed architecture processes one matrix result every clock cycle after an initial latency of a few 
cycles (due to pipelining). With an 8×8 matrix, the architecture requires 8 cycles to fully populate the 
systolic array, after which output data is streamed continuously. This makes it highly suitable for real-time 
tasks like convolution filtering, edge detection, and spectral transforms in embedded platforms. 
Comparative Analysis 
Compared to existing designs such as the serial matrix multiplier in [3] and the reconfigurable cores in [11], 
the proposed design achieves better throughput-to-resource ratio and allows for easy scalability. The use 
of a pure systolic array ensures minimal control overhead and a predictable data flow path, making it more 
efficient for real-time applications. 
Systolic Array Model for Matrix Multiplication 
The systolic array model is a widely adopted parallel architecture used to accelerate matrix operations in 
hardware, particularly suited for FPGAs due to its regular and pipelined structure. In the proposed design, 
a two-dimensional systolic array is implemented to compute the product of two 8×8 matrices, where each 
element of the result matrix is generated through a series of multiply-and-accumulate (MAC) operations 
across a network of processing elements (PEs). 
Operation Principle 
Each PE in the systolic array performs one MAC operation per clock cycle. The rows of matrix A are 
streamed horizontally across the array, while the columns of matrix B are streamed vertically. The element 
Ci,j of the result matrix C is computed as: 

 
Ci,j = ∑ Ai, k × Bk, j଼

୩ୀଵ       (1) 
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At each clock cycle: 
 A row element from A and a column element from B enter the corresponding PE. 
 The PE multiplies the incoming values and accumulates the result with its internal register. 
 The row and column data are passed on to neighboring PEs in the east and south directions, 
respectively. 
 

Table 2: Comparison of Matrix Multiplier Architectures on FPGA Platforms 

Feature / Metric Proposed Design 
[3] Mogre & Bhalke 
(2015) 

[11] Belkacemi et al. 
(2003) 

Architecture Type Systolic Array 
Vedic Multiplier 
(Serial) Fully Parallel Custom Core 

Target FPGA Spartan-6 XC6SLX45 Spartan-3E Virtex FPGA (XCV1000E) 

Matrix Size 8 × 8 4 × 4 
3 × 3 (parameterized 
design) 

Word Length 16-bit Fixed Point 8-bit Integer 16-bit Fixed Point 
Clock Frequency (MHz) 75 MHz (Estimated) 50 MHz 175 MHz 

LUT Utilization (%) 15.80% 20% 
High (2,448 slices for 3×3 
multiplier) 

DSP Utilization (%) 55.2% (32/58) Not used Not specified 

Throughput 
1 output / cycle after 
latency 1 output / 16 cycles 1 full matrix / cycle 

Scalability High (modular PEs) Limited 
Parameterized, but area-
intensive 

Area Efficiency Moderate Good Low (high area cost) 

Application Focus 
Real-time image & 
signal processing 

Educational/low-
power math unit 

High-performance image 
core 

 
Hardware Mapping 
The systolic array is mapped onto the FPGA fabric as a grid of 64 PEs (8×8). Each PE consists of: 
 A multiplier (utilizing DSP blocks), 
 An adder with a feedback register (using LUTs and flip-flops), 
 Routing logic to pass data to adjacent PEs. 
This local interconnection pattern reduces routing complexity and improves performance compared to 
centralized control logic. 
Timing Characteristics 
The array is filled in 8 clock cycles, after which valid outputs are produced every cycle until all outputs are 
computed. This pipelined execution model ensures maximum throughput and consistent timing behavior. 
The total latency for full matrix multiplication is approximately 16 clock cycles (8 for filling, 8 for 
computation completion), which remains constant due to the fixed matrix size. 
Advantages of the Model 
 Parallelism: All elements of the result matrix are computed simultaneously after the pipeline is 
filled. 
 Scalability: Can be extended to larger matrix sizes by increasing array dimensions. 
 Resource Efficiency: Utilizes FPGA logic in a modular and repeatable pattern, reducing synthesis 
complexity. 
 Throughput: Ideal for real-time applications as outputs are generated at each clock cycle after 
initial latency. 
 
CONCLUSION AND FUTURE WORK 
This paper presented a systolic array-based matrix multiplier architecture implemented on a Spartan-6 
FPGA for 8×8 matrix operations in real-time image and signal processing applications. The proposed design 
efficiently leverages the parallel processing capabilities of FPGAs, utilizing a grid of processing elements 
that perform multiply-and-accumulate operations in a pipelined fashion. Fixed-point arithmetic was 
adopted to optimize the use of LUTs and DSP slices, achieving a balanced trade-off between resource 
utilization and computational precision. The implementation results demonstrate the feasibility of real-
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time matrix computation using low-cost FPGAs. With only 15.8% LUT utilization and moderate DSP usage, 
the design maintains a high throughput and predictable timing behavior, processing each matrix result in 
approximately 16 clock cycles. The architecture is modular, scalable, and suitable for embedded 
applications requiring deterministic performance. 
In future work, the current design can be enhanced in multiple directions. First, support for larger matrix 
sizes can be incorporated by integrating external memory buffers and implementing tiling strategies. 
Second, partial reconfiguration may be explored to dynamically reconfigure matrix sizes or switch between 
fixed-point and floating-point computation modes. Finally, power optimization techniques, such as clock 
gating and data-aware activation, will be investigated to further adapt the system for energy-constrained 
environments such as portable medical imaging devices and edge AI accelerators. 
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